Зависимость потенциальной энергии межмолекулярного взаимодействия от расстояния между молекулами. Силы и потенциальная энергия межмолекулярного взаимодействия Зависимость потенциальной энергии от расстояния между молекулами

29.06.2020

Если массу молекулы тела обозначить , а скорость ее поступательного движения , то кинетическая энергия поступательного движения молекулы будет равна

Молекулы тела могут иметь различные скорости и величину поэтому для характеристики состояния тела используется средняя энергия поступательного движения

где - общее число молекул в теле. Если все молекулы одинаковы, то

Здесь обозначает среднюю квадратичную скорость хаотического движения молекул:

Поскольку между молекулами имеются силы взаимодействия, то молекулы тела, кроме кинетической энергии, обладают потенциальной энергией. Будем считать потенциальную энергию уединенной молекулы, не взаимодействующей с другими молекулами, равной нулю. Тогда при взаимодействии двух молекул потенциальная энергия, обусловленная силами отталкивания, будет положительной, а силами притяжения - отрицательной (рис. 2.1, б), поскольку при сближении молекул для преодоления сил отталкивания надо выполнить определенную работу, а силы притяжения, наоборот, сами совершают работу. На рис. 2.1, б показан график изменения потенциальной энергии взаимодействия двух молекул в зависимости от расстояния между ними. Часть графика потенциальной энергии вблизи ее наименьшего значения называют потенциальной ямой, а величину наименьшего значения энергии - глубиной потенциальной ямы.

При отсутствии кинетической энергии молекулы расположились бы на расстоянии которое соответствует их устойчивому равновесию, так как равнодействующая молекулярных сил в этом случае равна нулю (рис. 2.1, а), а потенциальная энергия минимальна. Чтобы удалить друг от друга молекулы, нужно совершить работу по преодолению сил взаимодействия молекул,

равную по величине (другими словами, молекулы должны преодолеть потенциальный барьер высотой

Так как в действительности молекулы всегда обладают кинетической энергией, то расстояние между ними непрерывно изменяется и может быть как больше, так и меньше . Если кинетическая энергия молекулы В будет меньше например на рис. то молекула будет двигаться в пределах потенциальной ямы. Преодолевая противодействие сил притяжения (или отталкивания), молекула В может удаляться от А (или сближаться) до расстояний, при которых вся ее кинетическая энергия превращается в потенциальную энергию взаимодействия. Эти крайние положения молекулы определяются точками на потенциальной кривой на уровне от дна потенциальной ямы (рис. 2.1, б). Затем силы притяжения (или отталкивания) отбрасывают молекулу В от этих крайних положений. Таким образом, силы взаимодействия удерживают молекулы друг возле друга на некотором среднем расстоянии .

Если кинетическая энергия молекулы В больше Ямив (Епост» на рис. 2.1, б), то она преодолеет потенциальный барьер и расстояние между молекулами может возрастать неограниченно.

Когда молекула движется в пределах потенциальный ямы, то чем больше ее кинетическая энергия ( на рис. 2.1, б), т. е. чем выше температура тела, тем больше становится среднее расстояние между молекулами Этим объясняется расширение твердых тел и жидкостей при нагревании.

Увеличение среднего расстояния между молекулами объясняется тем, что график потенциальной энергии слева от поднимается гораздо круче, чем справа. Такая асимметрия графика получается вследствие того, что силы отталкивания уменьшаются при увеличении значительно быстрее, чем силы притяжения (рис. 2.1, а).


Столкновением молекул будем называть процесс их взаимодействия, в результате которого изменяются скорости молекул .

Характер взаимодействия молекул можно представить, если рассмотреть зависимость потенциальной энергии взаимодействия молекул от расстояния между их центрами. Эта зависимость имеет вид, приближенно показанный на рисунке 11.2.

Представим, что одна молекула находится в начале координат, а вторая приближается к ней из «бесконечности», имея очень небольшую кинетическую энергию. На расстояниях, превышающих , взаимодействие молекул имеет характер притяжения. Действительно, для с увеличением расстояния между молекулами потенциальная энергия возрастает. Это означает, что ее градиент направлен в сторону увеличения расстояния между молекулами, а сила взаимодействия () направлена в сторону уменьшения расстояния между молекулами. Поэтому при сближении молекул их взаимная скорость возрастает: потенциальная энергия взаимодействия преобразуется в кинетическую, приближающаяся молекула разгоняется.

На расстояниях менее притяжение сменяется быстро возрастающим отталкиванием. Потенциальная энергия взаимодействия резко возрастает (кинетическая преобразуется в потенциальную), и при ее равенстве начальной кинетической энергии молекулы останавливаются. Далее происходят обратные процессы, молекулы разлетаются.

Минимальное расстояние d, на которое сближаются при соударении центры молекул, называется эффективным диаметром молекулы . Величина называется эффективнымсечениеммолекулы . равно площади поперечного сечения цилиндра, по оси которого движется данная молекула, такого, что если центр другой молекулы попадает в объем цилиндра, то молекулы должны столкнуться.

Понятно, что при увеличении температуры центры молекул при соударениях будут сближаться сильнее, поэтому эффективный диаметр зависит от температуры . Следует иметь в виду, что рост потенциальной энергии отталкивания происходит очень быстро, поэтому зависимость эффективного диаметра от температуры имеет место обязательно, но выражена не очень сильно .

За секунду молекула проходит в среднем путь, равный ее средней скорости . Если за секунду она претерпевает столкновений, тосредняядлинасвободногопробега молекулы

Для расчета предположим, что все молекулы, кроме данной, покоятся на своих местах. Ударившись об одну из неподвижных молекул, данная будет лететь прямолинейно до соударения с другой. Очередное столкновение произойдет в том случае, если центр неподвижной молекулы окажется от прямой, вдоль которой летит данная молекула, на расстоянии меньшим эффективного диаметра. За секунду молекула столкнется со всеми молекулами, центры которых попадают в объем коленчатого цилиндра с основанием и длинной, равной средней скорости . Если концентрация молекул равна n , то число соударений на этом пути

Необходимо учесть, что на самом деле движутся все молекулы, и в (11.9) необходимо учитывать не , а среднюю относительную скорость движения молекул, которая в раз больше. Тогда для средней длины свободного пробега l можем записать:

Представляет интерес количественная оценка l и . Будем считать, что в жидкости молекулы находятся на небольших расстояниях друг от друга. Тогда корень третьей степени из объема, приходящегося на одну молекулу, даст нам оценку размеров молекулы. Один моль воды занимает объем 18*10 -10 м3 и содержит число Авогадро 6*10 23 молекул. Тогда на одну молекулу приходится » 30*10 -30 м3 , а диаметр молекулы » 3*10 -10 м. При условиях, близких к нормальным, один моль газа занимает объем . Тогда концентрацию молекул при нормальных условиях можно оценить по формуле , а среднюю длину свободного пробега в соответствии с формулой (11.10)

При изучении поведения большой совокупности молекул вместо силы взаимодействия молекул удобнее пользоваться потенциальной энергией.

Нужно вычислять средние характеристики системы, а понятие средней силы взаимодействия молекул лишено смысла, так как сумма всех сил, действующих между молекулами, в соответствии с третьим законом Ньютона равна нулю. Средняя же потенциальная энергия в существенной мере определяет состояние и свойства вещества.

Зависимость потенциальной энергии от расстояния между молекулами

Так как изменение потенциальной энергии определяется работой силы, то по известной зависимости силы от расстояния можно найти зависимость от расстояния потенциальной энергии. Но нам достаточно знать лишь примерный вид потенциальной кривой Е р (r ). Прежде всего вспомним, что потенциальная энергия определяется с точностью до произвольной постоянной, потому что непосредственный смысл имеет не сама потенциальная энергия, а разность потенциальных энергий в двух точках, равная работе, взятой с противоположным знаком. Будем считать, как принято в физике, Е = 0 при r → ∞. Потенциальную энергию системы можно рассматривать как работу, которую система может совершить, причем потенциальная энергия определяется расположением тел, но не их скоростями. Чем больше расстояние между молекулами, тем большую работу совершат силы притяжения между ними при их сближении. Поэтому при уменьшении r , начиная от очень больших значений, потенциальная энергия будет уменьшаться. Мы приняли, что при r → ∞ потенциальная энергия равна нулю, следовательно, при уменьшении r потенциальная энергия становится отрицательной (рис. 2.12).

В точке r = r 0 сила равна нулю (см. рис. 2.10). Поэтому если молекулы расположены на этом расстоянии, то они будут покоиться, и никакую работу система совершать не может. Это означает, что при r = r 0 потенциальная энергия имеет минимум. Мы могли бы это значение потенциальной энергии Е p 0 принять за начало отсчета потенциальной энергии. Тогда она была бы всюду положительной (рис. 2.13). Обе кривые (см. рис. 2.12 и 2.13) одинаково характеризуют взаимодействие молекул. Разность значений Е р для двух точек одинакова у обеих кривых, а только она и имеет смысл.

При r < r 0 появляются быстро растущие силы отталкивания. Они также могут совершать работу. Поэтому потенциальная энергия при дальнейшем сближении молекул растет, причем очень быстро.

Потенциальная кривая будет иметь форму, изображенную на рисунке 2.12, если молекулы сближаются в плоскости А вдоль линии, соединяющей их центры (рис. 2.14). Если же молекулы сближаются в плоскости В или в плоскости С, то потенциальная кривая будет иметь вид, показанный соответственно на рисунках 2.15, а и 2.15, б.

Главная задача

Можно многое объяснить и понять, исходя из определенных представлений о характере взаимодействия молекул в веществе. Мы остановимся только на одном очень общем вопросе: каким образом знание зависимости потенциальной энергии от расстояния между молекулами позволяет установить количественный критерий различия между газами, жидкостями и твердыми телами с точки зрения молекулярно-кинетической теории.

Предварительно рассмотрим движение молекул с энергетической точки зрения.

Химическая связь. Зависимость потенциальной энергии от межъядерного расстояния в двухатомной молекуле. Виды химической связи. Основные характеристики химической связи: длина, энергия, кратность связи, валентный угол. Виды химических связей. Ионная связь. Металлическая связь. Межмолекулярные взаимодействия. Водородная связь.

Образование химических соединений обусловлено возникновением химической связи между атомами в молекулах и кристаллах.

Химическая связь – совокупность взаимодействий атомов, приводящая к образованию устойчивых систем (молекул, комплексов, кристаллов и др.). Химическая связь возникает, если в результате перекрывания электронных облаков атомов происходит уменьшение полной энергии системы.

Мерой прочности химической связи между атомами А и В служит энергия связи Е А-В, которая определяется работой, необходимой для разрушения данной связи. Так, для атомизации 1 моль газообразного водорода требуется затратить энергию Е= 436 кДж, следовательно, образование молекулы Н 2 из атомов

Н+Н=Н 2 сопровождается выделением такого же количества энергии, т.е. Е Н-Н =436кДж/моль.

Важной характеристикой связи является ее длина , т.е. расстояние между центрами атомов А и В в молекуле. Энергия и длина связей зависят от характера распределения электронной плотности между атомами. На распределение электронной плотности влияет пространственная направленность химической связи. Если двухатомные молекулы всегда линейны, то формы многоатомных молекул могут быть различны. Так трехатомная молекула может иметь линейную или угловую форму. Угол между воображаемыми линиями, которые можно провести через центры связанных атомов называется валентным.

Распределение электронной плотности между атомами зависит также от размеров атомов и их электроотрицательности – способности атомов к оттягиванию на себя электронной плотности партнеров. В гомоатомных (т.е. состоящих из одинаковых атомов) молекулах электронная плотность распределена равномерно между атомами. В гетероатомных (состоящих из атомов разных элементов) молекулах электронная плотность смещается в том направлении, которое способствует уменьшению энергии системы (к более электроотрицательному элементу). Электронная плотность повышается вблизи ядра атома более электроотрицательного элемента. Связь в гетероатомных молекулах всегда в той или иной мере полярна , так как электронная плотность в них распределена несимметрично.

Образование ковалентной связи происходит за счет неспаренных электронов каждого атома, которые образуют общую пару. Если между атомами возникла одна связь (одна общая пара), такую связь называют одинарной. Пример НСl, НВr, NаСl, Н 2

Если между атомами возникло больше одной общей электронной пары, то связь называется кратной: двойной (две общие пары), тройной (три общие пары). Примером молекулы с тройной связью является молекула азота. В каждом атоме азота имеется по три неспаренных р-электрона. Каждый из них принимает участие в образовании связи. В молекуле N 2 три связи между атомами. Наличие тройной связи объясняет высокую химическую устойчивость молекулы. Пример с двойной связью О 2 . у каждого атома кислорода по 2 неспаренных р-электрона, которые участвуют в образовании связей.

Зависимость потенциальной энергии от расстояние между атомами в двухатомной молекуле выражается следующим соотношением: (стр 112 рисунок и уравнение)

U = 1∕4πε 0 × (е 2 ∕ r А-В + е 2 ∕ r 12 - е 2 ∕ r А1 - е 2 ∕ r Б2 - е 2 ∕ r А2 - е 2 ∕ r В1), где ε 0 - электрическая постоянная. Следовательно потенциальная энергии обратно пропорциональна расстоянию между ядрами в двухатомной молекуле.

Ионная химическая связь – это связь, образовавшаяся за счет электростатического притяжения катионов (положительно заряженных ионов) к анионам (отрицательно заряженных ионов).

Наиболее устойчивой является такая электронная конфигурация атомов, при которой на внешнем электронном уровне, подобно атомам благородным газам. Будут находиться 8 электронов (или для первого периода 2). При химическом взаимодействии атомы стремятся приобрести именно такую устойчивую электронную конфигурацию и часто достигают этого ли в результате присоединения валентных электронов от других атомов (процесса восстановления), или в результате отдачи своих валентных электронов (открывается завершенный слой) – процесс окисления. Атомы, присоединившие чужие электроны превращаются в отрицательные ионы - анионы. Атомы, отдавшие свои электроны, превращаются в положительные ионы – катионы. Между анионами катионами возникают силы электростатического притяжения, которые и будут удерживать их друг около друга, осуществляя тем самым ионную связь. Так как катионы образуют в основном атомы металлов, а анионы – атомы неметаллов, то такой тип связи характерен для соединений типичных металлов (элементы главной подгруппы 1-2 групп кроме Мg, Ве) с типичными неметаллами (элементы главной подгруппы 7 группы) NаСl. Вещества с ионной связью имеют ионную кристаллическую решетку. Ионные соединения твердее, прочные, тугоплавкие. Растворы, расплавы большинства ионных соединений – электролиты. Этот тип связи характерен для гидроксидов типичных металлов и многих солей кислородсодержащих кислот (растворимых). При образовании ионной связи не происходит полного (идеального) перехода электронов. Взаимодействие ионов не зависит от направления, оно в отличие от ковалентной связи ненаправленное. Ионная связь существует в солях аммония, где роль катиона играет NН 4 + - ион аммония. (NН 4)ОН, NН 4 Сl.

Связь в металлах и сплавах, которую выполняют относительно свободные (обобщенные) электроны между ионами металлов в металлической кристаллической решетке называется металлической . Такая связь – ненаправленная, ненасыщенная, характеризуется небольшим числом валентных электронов (внешние неспаренные) и большим числом свободных орбиталей, что характерно для атомов металлов. Наличием металлической связи обусловлены физические свойства металлов и сплавов: твердость, электро- и теплопроводность, ковкость, пластичность, блеск. Вещества с металлической связью имеют металлическую кристаллическую решетку. В ее узлах находятся атомы или ионы, между которыми свободно (в пределах кристалла) перемещаются электроны (электронный газ). Металлическая связь характерна только для конденсированного состояния вещества. Паро- и газообразном состоянии атомы всех веществ, в том числе и металлов, связаны между собой только ковалентной связью. Электронная плотность у металлической связь равномерно распределена по всем направлениям. Металлическая связь не исключает некоторой доли ковалентности. в частом виде металлическая связь характерна только для щелочных и щелочноземельных металлов. В переходных металлах лишь небольшая часть валентных электронов находится в состоянии обобществления. Число электронов, принадлежащих всему кристаллу, невелико. Остальные электроны осуществляют направленные ковалентные связи между соседними атомами. Образование связей может происходить не только между атомами, но и между молекулами. Оно является причиной конденсации газов и превращения их в жидкости, твердые вещества. Первую формулировку силам межмолекулярного взаимодействия дал в 1871 г Ван-дер-Ваальс. (Ван-дер-ваальсовы силы). Полярные молекулы, вследствие электростатического притяжения концов диполей, ориентируются в пространстве так, что отрицательные концы диполей одних молекул повернуты к положительным концам диполей других молекул. Энергия такого взаимодействия определяется электростатическим притяжением двух диполей. Чем больше диполь, тем сильнее межмолекулярное притяжение. Под влиянием диполя одной молекулыможет увеличиваться диполь другой, а неполярная молекула может стать полярной. Такой дипольный момент, появляющийся под воздействием диполя другой молекулы называется индуцированным дипольным моментом, а само явление – индукцией . Известно, что Н 2 , О 2 , N 2 и благородные газы сжижаются. Для объяснения этого факта ввели понятие дисперсионных сил межмолекулярного взаимодействия. Эти силы действуют между любыми атомами и молекулами независимо от их строения. Эти силы и Ван-дер-ваальсовы силы очень слабы.

Особым видом химической связи является водородная связь . Водородной называют химическую связь между положительно поляризованными атомам водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов, имеющих неподеленные пары электронов. Механизм образования водородной связи имеет частично электростатический, частично донорно-акцепторный характер (стр 147 рисунок) при наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями. В белках имеется внутри молекулы водородная связь между карбонильным кислородом и водородной аминогруппы. В ДНК две цепи нуклеотидов связаны друг с другом водородными связями. Вещества с водородной связью имеют молекулярную кристаллическую решетку. Энергия водородной связи (21-29 кДж∕моль) почти в 10 раз меньше энергии обычной химической связи. Но она сшивает все молекулы, а при нагревании они первыми разрываются.

Позволяет провести анализ общих закономерностей движения, если известна зависимость потенциальной энергии от координат. Рассмотрим для примера одномерное движение материальной точки (частицы), вдоль оси 0x в потенциальном поле, показанном на рис. 4.12.

Рис.4.12. Движение частицы вблизи положений устойчивого и неустойчивого равновесия

Поскольку в однородном поле сил тяжести потенциальная энергия пропорциональна высоте подъема тела, можно представить себе ледяную горку (пренебрегаем трением) с профилем, соответствующим функции П(x) на рисунке.

Из закона сохранения энергии E = К + П и из факта, что кинетическая энергия К = Е - П всегда неотрицательна, следует, что частица может находиться лишь в областях, где E > П . На рисунке частица с полной энергией E может двигаться только в областях

В первой области ее движение будет ограничено (финитно): при данном запасе полной энергии частица не может преодолеть «горок» на своем пути (их называют потенциальными барьерами ) и обречена вечно оставаться в «долине» между ними. Вечно - с точки зрения классической механики, которую мы сейчас изучаем. В конце курса мы увидим, как квантовая механика помогает частице выбраться из заточения в потенциальной яме - области

Во второй области движение частицы не ограничено (инфинитно), она может удалиться бесконечно далеко от начала координат направо, но слева ее движение по-прежнему ограничено потенциальным барьером:

Видео 4.6. Демонстрация финитного и инфинитного движений.

В точках экстремума потенциальной энергии x MIN и x MAX сила, действующая на частицу, равна нулю, потому что равна нулю производная потенциальной энергии:

Если поместить в эти точки покоящуюся частицу, то она оставалась бы там... опять-таки вечно, если бы не флуктуации ее положения. В этом мире нет ничего строго покоящегося, частица может испытывать небольшие отклонения (флуктуации ) от положения равновесия. При этом, естественно, возникают силы. Если они возвращают частицу к положению равновесия, то такое равновесие называется устойчивым . Если же при отклонении частицы возникающие силы еще дальше уводят ее от равновесного положения, то мы имеем дело с неустойчивым равновесием, и частица в таком положении обычно долго не задерживается. По аналогии с ледяной горкой можно догадаться, что устойчивым будет положение в минимуме потенциальной энергии, а неустойчивым - в максимуме.

Докажем, что это действительно так. Для частицы в точке экстремума x M (x MIN или x MAX ) действующая на нее сила F x (x M) = 0 . Пусть вследствие флуктуации координата частицы изменяется на небольшую величину x . При таком изменении координаты на частицу начнет действовать сила

(штрихом обозначена производная по координате x ). Учитывая, что F x =-П" , получаем для силы выражение

В точке минимума вторая производная потенциальной энергии положительна: U"(x MIN) > 0 . Тогда при положительных отклонениях от положения равновесия x > 0 возникающая сила отрицательна, а при x <0 сила положительна. В обоих случаях сила препятствует изменению координаты частицы, и положение равновесия в минимуме потенциальной энергии устойчиво.

Наоборот, в точке максимума вторая производная отрицательна: U"(x MAX)<0 . Тогда увеличение координаты частицы Δx приводит к возникновению положительной же силы, еще больше увеличивающей отклонение от положения равновесия. При x <0 сила отрицательна, то есть и в этом случае способствует дальнейшему отклонению частицы. Такое положение равновесия неустойчиво.

Таким образом, положение устойчивого равновесия может быть найдено при совместном решении уравнения и неравенства

Видео 4.7. Потенциальные ямы, потенциальные барьеры и равновесие: устойчивое и неустойчивое.

Пример . Потенциальная энергия двухатомной молекулы (например, Н 2 или О 2 ) описывается выражением вида

где r - расстояние между атомами, а A , B - положительные постоянные. Определить равновесное расстояние r М между атомами молекулы. Устойчива ли двухатомная молекула?

Решение . Первый член описывает отталкивание атомов на малых расстояниях (молекула сопротивляется сжатию), второй - притяжение на больших расстояниях (молекула сопротивляется разрыву). В соответствии со сказанным, равновесное расстояние находится при решении уравнения

Дифференцируя потенциальную энергию, получаем

Находим теперь вторую производную потенциальной энергии

и подставляем туда значение равновесного расстояния r M :

Положение равновесия устойчиво.

На рис. 4.13 представлен опыт по изучению потенциальных кривых и условий равновесия шарика. Если на модели потенциальной кривой поместить шарик на высоту большую высоты потенциального барьера (энергия шарика больше энергии барьера), то шарик преодолевает потенциальный барьер. Если начальная высота шарика меньше высоты барьера, то шарик остается в пределах потенциальной ямы.

Шарик, помещенный в наивысшую точку потенциального барьера, находится в неустойчивом равновесии, поскольку любое внешнее воздействие приводит к переходу шарика в нижнюю точку потенциальной ямы. В нижней точке потенциальной ямы шарик находится в устойчивом равновесии, поскольку любое внешнее воздействие приводит к возвращению шарика в нижнюю точку потенциальной ямы.

Рис. 4.13. Экспериментальное изучение потенциальных кривых

Дополнительная информация

http://vivovoco.rsl.ru/quantum/2001.01/KALEID.PDF – Приложение к журналу «Квант» - рассуждения об устойчивом и неустойчивом равновесии (А. Леонович);

http://mehanika.3dn.ru/load/24-1-0-3278 – Тарг С.М. Краткий курс теоретической механики, Изд,Высшая школа, 1986 г. – стр. 11–15, §2 – исходные положения статики.

Похожие статьи