Типы и виды случайных процессов. Характеристики случайных процессов. Понятие случайной функции. Стационарные случайные процессы

29.06.2020

Глава 1. Основные понятия теории случайных процессов

Определение случайного процесса. Основные подходы к заданию

Случайных процессов. Понятие реализации и сечения.

Элементарные случайные процессы.

Случайным (стохастическим, вероятностным) процессом называется функция действительного переменного t, значениями которой являются соответствующие случайные величины X(t).

В теории случайных процессов t трактуется как время, принимающее значения из некоторого подмножества Т множества действительных чисел (t T, T R).

В рамках классического математического анализа под функцией y=f(t) понимается такой тип зависимости переменных величин t и y, когда конкретному числовому значению аргумента t соответствует и притом единственное числовое значение функции y. Для случайных процессов ситуация принципиально иная: задание конкретного аргумента t приводит к появлению случайной величины X(t) с известным законом распределения (если это дискретная случайная величина) или с заданной плотностью распределения (если это непрерывная случайная величина). Другими словами, исследуемая характеристика в каждый момент времени носит случайный характер с неслучайным распределением.

Значения, которые принимает обычная функция y=f(t) в каждый момент времени, полностью определяет структуру и свойства этой функции. Для случайных процессов дело обстоит совершенно иным образом: здесь совершенно не достаточно знать распределение случайной величины X(t) при каждом значении t, необходима информация об ожидаемых изменениях и их вероятностях, то есть информация о степени зависимости предстоящего значения случайного процесса от его предыстории.

Наиболее общий подход в описании случайных процессов состоит в задании всех его многомерных распределений, когда определена вероятность одновременного выполнения следующих событий:

t 1 , t 2 ,…,t n T, n N: X(t i) x i ; i=1,2,…,n;

F(t 1 ;t 2 ;…;t n ;x 1 ;x 2 ;…;x n) = P(X(t 1)≤x 1 ; X(t 2)≤x 2 ;…; X(t n)≤x n).

Такой способ описания случайных процессов универсален, но весьма громоздок. Для получения существенных результатов выделяют наиболее важные частные случаи, допускающие применение более совершенного аналитического аппарата. В частности, удобно рассматривать случайный процессX(t, ω) как функцию двух переменных: t T, ω Ω , которая при любом фиксированном значении t T становится случайной величиной, определенной на вероятностном пространстве (Ω, AА, P), где Ω - непустое множество элементарных событий ω; AА - σ-алгебра подмножеств множества Ω, то есть множество событий; P - вероятностная мера, определенная на AА.

Неслучайная числовая функция x(t)=X(t, ω 0) называется реализацией (траекторией) случайного процесса X(t, ω).

Сечением случайного процесса X(t, ω) называется случайная величина, которая соответствует значению t=t 0 .

Если аргумент t принимает все действительные значения или все значения из некоторого интервала T действительной оси, то говорят о случайном процессе с непрерывным временем . Если t принимает только фиксированные значения, то говорят о случайном процессе с дискретным временем .

Если сечение случайного процесса - дискретная случайная величина, то такой процесс называется процессом с дискретными состояниями . Если же любое сечение - непрерывная случайная величина, то случайный процесс называется процессом с непрерывными состояниями .

В общем случае задать случайный процесс аналитически невозможно. Исключение составляют так называемые элементарные случайные процессы , вид которых известен, а случайные величины входят как параметры:

X(t)=Х(t,A 1 ,…,A n), где A i , i=1,…,n - произвольные случайные величины с конкретным распределением.

Пример 1 . Рассматривается случайный процесс X(t)=A·e - t , где А - равномерно распределенная дискретная случайная величина, принимающая значения {-1;0;1}; t≥0. Изобразить все его реализации случайного процесса X(t) и показать сечения в моменты времени t 0 =0; t 1 =1; t 2 =2.

Решение.

Данный случайный процесс является процессом с непрерывным временем и дискретными состояниями. При t=0 сечением случайного процесса X(t) является дискретная случайная величина А{-1;0;1}, распределенная равномерно.

При t=0 сечением случайного процесса X(t) является дискретная случайная величина А{-1;0;1}, распределенная равномерно.

При t=1 сечением случайного процесса X(t) является дискретная случайная величина {-1/е;0;1/е}., распределенная равномерно.

При t=2 сечением случайного процесса X(t) является дискретная случайная величина {-1/е 2 ;0;1/е 2 }., распределенная равномерно.

Пример 2 . Рассматривается случайный процесс X(t)=sin At, где А - дискретная случайная величина, принимающая значения {0;1;2}; аргумент t принимает дискретные значения {0; π/4; π/2; π }. Изобразить графически все реализации и сечения данного случайного процесса.

Решение.

Данный случайный процесс является процессом с дискретным временем и дискретными состояниями.

Процессов

Функция вида

Функция вида

Решение.

Математическое ожидание: m Y (t)=M(Xe - t)=e - t m X =me - t .

Дисперсия: D Y (t)=D(Xe - t)=e -2 t DX=σ 2 e -2 t .

Стандартное отклонение:

Корреляционная функция: K Y (t 1 ; t 2)=M((X e - t 1 -m e - t 1)×(X e - t 2 -m e - t 2))=

E -(t 1+ t 2) M(X-m) 2 =σ 2 e -(t 1+ t 2) .

Нормированная корреляционная функция:

По условию задачи случайная величина X распределена нормально; при фиксированном значении t сечение Y(t) линейно зависит от случайной величины X, и по свойству нормального распределения сечение Y(t) также распределено нормально с одномерной плотностью распределения:

Пример 4. Найти основные характеристики случайного процесса Y(t)=W×e - Ut (t>0), где W и U - независимые случайные величины; U распределена равномерно на отрезке ; W имеет математическое ожидание m W и стандартное отклонение σ W .

Решение.

Математическое ожидание: m Y (t)=M(We - Ut)=MW×M(e - Ut)=m w ×*M(e - Ut);

, (t>0).

Корреляционная функция:

так как

Дисперсия:

Пример 5. Найти одномерный закон распределения случайного процесса: Y(t)=Vcos(Ψt-U), где V и U независимые случайные величины; V нормально распределена с параметрами (m V ; σ V); Ψ-const; U- равномерно распределена на отрезке .

Решение.

Математическое ожидание случайного процесса Y(t):

Дисперсия:

Стандартное отклонение:

Переходим к выводу одномерного закона распределения. Пусть t-фиксированный момент времени, и случайная величина U принимает фиксированное значение U=u - const; u , тогда получаем следующие условные характеристики случайного процесса Y(t):

M(Y(t)| U=u)=m V ×cos(Ψt-u);

D(Y(t)| U=u)= ×cos 2 (Ψt-u);

σ(Y(t)| U=u)= ×|cos(Ψt-u)|.

Так как случайная величина V распределена нормально и при заданном значении случайной величины U=u все сечения линейно зависимы, то условное распределение в каждом сечении является нормальным и имеет следующую плотность:

Безусловная одномерная плотность случайного процесса Y(t):

Очевидно, что это распределение уже не является нормальным.

Сходимость и непрерывность

Сходимость по вероятности.

Говорят, что последовательность случайных величин {Х n } сходится по вероятности к случайной величине Х при n®¥, если

Обозначение:

Обратите внимание, что при n®¥ имеет место классическая сходимость вероятности к 1, то есть с возрастанием номера n можно гарантировать сколь угодно близкие к 1 значения вероятности. Но при этом нельзя гарантировать близости значений случайных величин Х n к значениям случайной величины Х ни при каких сколь угодно больших значениях n, поскольку мы имеем дело со случайными величинами.

стохастически непрерывным в точке t 0 T, если

3. Сходимость в среднем в степени p³1.

Говорят, что последовательность случайных величин {X n } сходится в среднем в степени 1 к случайной величине Х, если

Обозначение: X n X.

В частности, {X n } сходится в среднеквадратичном к случайной величине Х, если

Обозначение:

Случайный процесс X(t), t T называется непрерывным в среднеквадратичном в точке t 0 T, если

4. Сходимость почти наверное (сходимость с вероятностью единица).

Говорят, что последовательность случайных величин {Х n } сходится почти наверное к случайной величине Х, если

где ωÎW - элементарное событие вероятностного пространства (W, AА, Р).

Обозначение: .

Слабая сходимость.

Говорят, что последовательность { F Xn (x)} функций распределения случайных величин Х n слабо сходится к функции распределения F X (x) случайной величины Х, если имеет место поточечная сходимость в каждой точке непрерывности функции F X (x).

Обозначение: F Xn (x)Þ F X (x).

Решение.

1) Математическое ожидание, дисперсия, стандартное отклонение, корреляционная функция и нормированная корреляционная функция случайного процесса X(t) имеют вид (см. Пример 3 ):

2) Переходим к расчету характеристик случайного процесса X ’ (t). В соответствии с Tтеоремами 1-3 получаем:

За исключением математического ожидания (которое поменяло знак), все остальные характеристики сохранились полностью. Взаимные корреляционные функции случайного процесса X(t) и его производной X ’ (t) имеют вид:

3) В соответствии с Теоремами 41-64 основные характеристики интеграла от случайного процесса X(t) имеют следующие значения:

D (t1;t2)=?????????????

Взаимные корреляционные функции случайного процесса X(t) и его интеграла Y(t):

Выражение вида

,

где φ ik (t), k=1;2;…-неслучайные функции; V i , k=1;2;…-некоррелированные центрированные случайные величины, называется каноническим разложением случайного процесса X(t), при этом случайные величины V i называются коэффициентами канонического разложения; а неслучайные функции φ ki (t) - координатными функциями канонического разложения.

Рассмотрим характеристики случайного процесса

Так как по условию то

Очевидно, что один и тот же случайный процесс имеет различные виды канонического разложения в зависимости от выбора координатных функций. Более того, даже при состоявшемся выборе координатных функций существует произвол в распределении случайных величин V к. На практике по итогам экспериментов получают оценки для математического ожидания и корреляционной функции: . После разложения в двойной ряд Фурье по координатным функциям φ к (t):

получают значения дисперсий D Vk случайных величин V k .

Пример 7 . Случайный процесс Х(t) имеет следующее каноническое разложение: , где V k -нормально распределенные некоррелированные случайные величины с параметрами (0; σ к); m 0 (t) - неслучайная функция. Найти основные характеристики случайного процесса Х(t), включая плотности распределения.

Решение.

Из полученных ранее общих формул имеем:

В каждом сечении случайный процесс Х(t) имеет нормальное распределение, так как является линейной комбинацией некоррелированных нормально распределенных случайных величин V k , при этом одномерная плотность распределения имеет вид:

Двумерный закон распределения также является нормальным и имеет следующую двумерную плотность распределения:

Пример 8. Известныо математическое ожидание m X (t) и корреляционная функция К X (t 1 ;t 2)=t 1 t 2 случайного процесса Х(t), где . Найти каноническое разложение Х(t) по координатным функциям при условии, что коэффициенты разложения V k - нормально распределенные случайные величины.

Решение.

Корреляционная функция имеет следующее разложение

следовательно,

;

;

Так как ,

то ; .

Плотность распределения случайных величин V k:

Каноническое разложение случайного процесса Х(t) имеет вид:

.

Узком и широком смыслах.

Значительное число происходящих в природе событий, в частности, связанных с эксплуатацией технических устройств, носит «почти» установившиейся характер, то есть картина таких событий, подверженных незначительным случайным флуктуациям, тем не менее, в целом с течением времени сохраняется. В этих случаях принятно говорить о стационарных случайных процессах.

Например, летчик выдерживает заданную высоту полета, но разнообразные внешние факторы (порывы ветра, всходящие потоки, изменение тяги двигателей и т.п.) приводят к тому, что высота полета колеблется около заданного значения. Другим примером могла бы служить траектория движения маятника. Если бы он был предоставлен сам себе, то при условии отсутствия систематических факторов, приводящих к затуханию колебаний, маятник находился бы в режиме установившихся колебаний. Но различные внешние факторы (порывы ветра, случайные колебания точки подвеса и т.п.), не меняя в целом параметров колебательного режима, тем не менее делают характеристики движения не детерминированными, а случайными.

Стационарным (однородным во времени) называют случайный процессСП, статистические характеристики которого не меняются с течением времени, то естьт.е. являются инвариантными относительно временных и сдвигов.

Различают случайные процессыСП стационарные в широком и узком смысле.

Таких, что

Выполняется условие

F(t 1 ; t 2 ;… ;t n ; x 1 ; x 2 ;…; x n)=F(t 1 +τ; t 2 +τ;… ;t n +τ; x 1 ; x 2 ;…; x n),

и, следовательно, все n-мерные распределения зависят не от моментов времени t 1 ; t 2 ;… ;t n , а от n-1 длительности временных промежутков τ i ;:

В частности, одномерная плотность распределения вообще не зависит от времени t:

двумерная плотность сечений в моменты времени t 1 и t 2

n-мерная плотность сечений в моменты времени t 1 ; t 2 ...; t n:

Случайный процессСП Хx(t) называется стационарным в широком смысле, если его моменты первого и второго порядка инвариантны относительно временного сдвига, то есть его математическое ожидание не зависит от времени t и является константой, а корреляционная функция зависит только от длины временного промежутка между сечениями:

Очевидно, что стационарный случайный процессССП в узком смысле является стационарным случайным процессомССП и в широком смысле;, обратное утверждение не верно.

ПроцессаССП

2. 3. Корреляционная функция стационарного случайного процессаССП четна:

Поскольку она обладает следующей симметрией

4. Дисперсия стационарного случайного процесса ССП есть константа, равная

знзнаачению ее корреляционной функции в точке :

6. Корреляционная функция стационарного случайного процессаССП является

положительно определенной, то есть

Нормированная корреляционная функция стационарного случайного процессаССП также четна, положительно определена и при этом

Пример 11. Найти характеристики и сделать вывод о типе случайного процессаСП Хx(t):

гГде U 1 иb U 2 - некоррелированные случайные величиныСВ;

Решение.

Следовательно, случайный процесс Х(t) является стационарным в широком смысле. Как следует из Ппримера 10… , если U 1 и U 2 независимые, центрирование и нормально распределенные случайные величиныСВ, то случайный процессСП также является стационарным в широком смысле.

Пример 12. Доказать, стационарность в широком смыслечто случайного процессаСП Хx(t) является стационарным в широком смысле:

где V и независимые случайные величиныСВ; MV=m vV - const; - норравномерномально распределенная на отрезке случайная величинаСВ;

Решение.

Запишем Хx(t) следующим образом:

Так как случайная величина равномерно распределена на отрезке , то плотность распределения имеет вид:

следовательно,

Получаем

Так как cлучайный процессСП Хx(t) имеет постоянные математическое ожидание и дисперсию, а корреляционная функция является функцией , то вне зависимости от закона распределения случайной величиныСВ V М случайный процессСП Х x(t) является стационарным в широком смысле.

Стационарно связанные СП

Cлучайные процессыСП X(t)X(t) и Y(t)Y(t) называются стационарно связанными, если их взаимная корреляционная функция зависит только от разности аргументов τ =t 2 -t 1:

R x XY y (t 1 ;t 2)=r x XY y (τ).

Стационарность самих случайных процессов СП X(t) X(t) и Y(t) Y(t) не означает их стационарной связанности.

Отметим основные свойства стационарно связанных случайных процессовСП, производной и интеграла от стационарных случайных процессовССП,

1) 1) rR x XYy (τ)=rR y YXx (-τ).

2) 2)

3) 3)

где

5) 5) где

6) 6) ;

Пример 13. Корреляционная функция стационарного случайного процессаССП X(t)X(t) имеет вид

Найти корреляционные функции, дисперсии, взаимные корреляционные функции случайных процессовСП X(t), X’(t), .

Решение.

Ограничимся анализом случая значениями D x Х (t)=1.

Воспользуемся следующим соотношением:

Получаем:

Обратите внимание, что в результатепри дифференцированияи стационарный случайный процессССП X(t) переходит в стационарный случайный процессССП X’(t) , при этом X(t) и X’(t) стационарно связаны. При интегрировании стационарного случайного процессаССП X(t) возникает нестационарный случайный процессСП Y(t), и при этом X(t) и Y(t) не являются стационарно связанными.

И их характеристики

Среди стационарных случайных процессовССП есть особый класс процессов, называемых эргодическими , которые обладают следующими свойствоами: их характеристики, полученные усреднением множества всех реализаций,совпадают с соответствующими характеристиками, полученными усреднением по времени одной реализации, наблюдаемой на интервале (0, T) достаточно большой продолжительности. То есть на достаточнобольшом временном промежутке любая реализация проходит через любое состояние независимо от того, каково было исходное состояние системы при t=0; и в этом смысле любая реализация полностью представляет всю совокупность реализаций.

На практике встречаются такие случайные величины, которые в процессе одного опыта непрерывно изменяются в зависимости от времени или каких-нибудь других аргументов. Например, ошибка сопровождения самолёта радиолокатором не остаётся постоянной, а непрерывно изменяется со временем. В каждый момент она случайна, но её значение в разные моменты времени при сопровождении одного самолёта различны. Другими примерами являются: угол упреждения при непрерывном прицеливании по движущейся цели; ошибка радиодальномера при непрерывном измерении меняющейся дальности; отклонение траектории управляемого снаряда от теоретической в процессе управления или самонаведения; флюктуационные (дробовые и тепловые) шумы в радиотехнических устройствах и так далее. Такие случайные величины называются случайными функциями. Характерной особенностью таких функций является то, что вид их до проведения опыта в точности указать не возможно. Случайная функция и случайная величина относятся друг к другу так же, как функция и постоянная величина, рассматриваемые в математическом анализе.

Определение 1. Случайная функция – это функция, которая каждому исходу опыта ставит в соответствие некоторую числовую функцию, то есть отображение пространства Ω в некоторое множество функций (рисунок 1).

Определение 2. Случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, неизвестно заранее – какой именно.


Конкретный вид, принимаемый случайной функцией в результате опыта, называется реализацией случайной функции.

В силу непредсказуемости поведения изобразить случайную функцию в общем виде на графике не представляется возможным. Можно лишь записать её конкретный вид – то есть её реализацию, полученную в результате проведения опыта. Случайные функции, как и случайные величины, принято обозначать большими буквами латинского алфавита X (t ), Y (t ), Z (t ), а их возможные реализации – соответственно x (t ), y (t ), z (t ). Аргумент случайной функции t в общем случае может быть произвольной (не случайной) независимой переменной или совокупностью независимых переменных.

Случайную функцию называют случайным процессом , если аргументом случайной функции является время. Если же аргумент случайной функции является дискретным, то её называют случайной последовательностью. Например, последовательность случайных величин есть случайная функция от целочисленного аргумента. На рисунке 2 в качестве примера приведены реализации случайной функции X (t ): x1 (t ), x2 (t ), … , xn (t ), которые являются непрерывными функциями времени. Такие функции применяются, например, для макроскопического описания флюктуационных шумов.

Случайные функции встречаются в любом случае, когда имеем дело с непрерывно работающей системой (системой измерения, управления, наведения, регулирования), при анализе точности работы системы приходится учитывать наличие случайных воздействий (полей); температура воздуха в различных слоях атмосферы рассматривается как случайная функция высоты H; положение центра масс ракеты (его вертикальная координата z в плоскости стрельбы) является случайной функцией от его горизонтальной координаты x . Это положение в каждом опыте (пуске) при одних и тех же данных наводки всегда несколько иное и отличается от теоретически рассчитанного.

Рассмотрим некоторую случайную функцию X (t ). Предположим, что над ней произведено n независимых опытов, в результате которых получено n реализаций (рисунок 3) x1 (t ), x2 (t ), … , xn (t ). Каждая реализация, очевидно, есть обычная (неслучайная) функция. Таким образом, в результате каждого опыта случайная функция X (t ) превращается в обычную, неслучайную функцию.

Зафиксируем некоторое значение аргумента t . Проведём на расстоянии

t = t0 прямую, параллельную оси ординат (рисунок 3). Эта прямая пересечёт реализации в каких-то точках.

Определение . Множество точек пересечения реализаций случайной функции с прямой t = t0 называется сечением случайной функции.

Очевидно, сечение представляет собой некоторую случайную величину , возможные значения которой представляют собой ординаты точек пересечения прямой t = t0 с реализациями xi (t ) (i = ).

Таким образом, случайная функция совмещает в себе черты случайной величины и функции. Если зафиксировать значение аргумента, она превращается в обычную случайную величину; в результате каждого опыта она превращается в обычную (неслучайную) функцию.

Например, если провести два сечения t = t1 и t = t2 , то получается две случайные величины X (t1 ) и X (t2 ), которые в совокупности образуют систему двух случайных величин.

2 Законы распределения

Случайная функция непрерывно изменяющегося аргумента на любом сколь угодно малом интервале его изменения равноценна бесконечному, несчётному множеству случайных величин, которые даже невозможно перенумеровать. Поэтому для случайной функции невозможно обычным путём определить закон распределения, как для обычных случайных величин и случайных векторов. Для изучения случайных функций применяют подход, основанный на фиксации одного или нескольких значений аргумента t и изучении получающихся при этом случайных величин, то есть случайные функции изучаются в отдельных сечениях, соответствующих различным значениям аргумента t .


Фиксируя одно значение t1 аргумента t , рассмотрим случайную величину X1 = X (t1 ). Для этой случайной величины можно определить обычным путём закон распределения, например, функцию распределения F1 (x1 , t1 ), плотность вероятности f1 (x1 , t1 ). Эти законы называются одномерными законами распределения случайной функции X ( t ). Особенностью их является то, что они зависят не только от возможного значения x 1 случайной функции X (t ) при t = t1 , но и от того, как выбрано значение t1 аргумента t , то есть законы распределения случайной величины X1 = X (t1 ) зависят от аргумента t1 как от параметра.

Определение . Функция F1 (x1 , t1 ) = Р(X (t1 )< x1 ) называется одномерной функцией распределения вероятностей случайной функции, или

F1 (x , t ) = Р(X (t )< x ) . (1)

Определение . Если функция распределения F1 (x1 , t1 ) = Р(X (t1 )< x1 ) дифференцируема по x1 то эта производная называется одномерной плотностью распределения вероятности (рисунок 4), или

. (2)

Одномерная плотность распределения случайной функции обладает теми же свойствами, что и плотность распределения случайной величины. В частности: 1) f 1 (x, t ) 0 ;

2) https://pandia.ru/text/78/405/images/image009_73.gif" width="449" height="242">

Одномерные законы распределения не описывают полностью случайную функцию, так как они не учитывают зависимости между значениями случайной функции в разные моменты времени.

Так как при фиксированном значении аргумента t случайная функция превращается в обычную случайную величину, то при фиксировании n значений аргумента получим совокупность n случайных величин X (t1 ), X (t2 ), …, X (tn ), то есть систему случайных величин. Поэтому задание одномерной плотности распределения f1 (x , t ) случайной функции X (t ) при произвольном значении аргумента t аналогично заданию плотностей отдельных величин входящих в систему. Полным описанием системы случайных величин является совместный закон их распределения. Поэтому более полной характеристикой случайной функции X (t ) является n-мерная плотность распределения системы, то есть функция fn (x1 , x2 , … , xn , t1 , t2 , … , tn ).

На практике нахождение n - мерного закона распределения случайной функции вызывает, как правило, большие затруднения, потому обычно ограничиваются двумерным законом распределения, который характеризует вероятностную связь между парами значений X ( t1 ) и X ( t2 ).

Определение . Двумерной плотностью распределения случайной функции X (t ) называется совместная плотность распределения её значений X (t1 ) и X (t2 ) при двух произвольно взятых значениях t 1 и t2 аргумента t .

f2 (x1 , x2 , t1 , t2 )= (3)

https://pandia.ru/text/78/405/images/image012_54.gif" width="227" height="49">. (5)

Условие нормировки для двумерной плотности распределения имеет вид

. (6)

3 Характеристики случайного процесса:

математическое ожидание и дисперсия

При решении практических задач в большинстве случаев получение и использование многомерных плотностей для описания случайной функции сопряжено с громоздкими математическими преобразованиями. В связи с этим при исследовании случайной функции чаще всего пользуются простейшими вероятностными характеристиками, аналогичными числовым характеристикам случайных величин (математическое ожидание, дисперсия) и устанавливаются правила действия с этими характеристиками.

В отличие от числовых характеристик случайных величин, которые являются постоянными числами , характеристики случайной функции являются неслучайными функциями его аргументов.

Рассмотрим случайную функцию X (t ) при фиксированном t . В сечении имеем обычную случайную величину. Очевидно, в общем случае математическое ожидание зависит от t , то есть представляет собой некоторую функцию t :

. (7)

Определение . Математическим ожиданием случайной функции X (t ) называется неслучайная функция https://pandia.ru/text/78/405/images/image016_47.gif" width="383" height="219">

Для вычисления математического ожидания случайной функции достаточно знать её одномерную плотность распределения

Математическое ожидание называют также неслучайной составляющей случайной функции X (t ), в то время как разность

(9)

называют флюктуационной частью случайной функции или центрированной случайной функцией.

Определение . Дисперсией случайной функции X (t ) называется неслучайная функция , значение которой для каждого t равно дисперсии соответствующего сечения случайной функции.

Из определения следует, что

Дисперсия случайной функции при каждом характеризует разброс возможных реализаций случайной функции относительно среднего, иными словами, «степень случайности» случайной функции (рисунок 6).

координаты цели, измеряет РЛС; угол атаки самолета; нагрузка в электрической цепи.

5. Типы случайных процессов.

В математике существует понятие случайной функции.

Случайная функция – такая функция, которая в результате опыта принимает тот или иной конкретный вид, причем заранее не известный какой именно. Аргумент такой функции – неслучайный. Если аргумент – время, то такая функция называется случайным процессом . Примеры случайных процессов:

Особенность случайной функции (процесса) в том, что при фиксированном значении аргумента (t ) случайная функция является случайной величиной, т.е. при t = t i Х (t ) = X (t i ) – случайная величина.

Рис. 2.1. Графическое представление случайной функции

Значения случайной функции при фиксированном аргументе называются его сечением . Т.к. случайная функция может иметь бесконечное множество сечений, а в каждом сечении она представляет собой случайную величину, то случайную функцию можно рассматривать как бесконечномерный случайный вектор .

Теория случайных функций часто называется теорией случайных (стохастических)

процессов.

Для каждого сечения случайного процесса можно указать m x (t i ), D x (t i ), x (t i ) и в общем случае – х (t i ).

Кроме случайных функций времени иногда используются случайные функции координат точки пространства. Эти функции приводят в соответствие каждой точке пространства некоторую случайную величину.

Теория случайных функций координат точки пространства называют теорией случайных полей . Пример: вектор скорости ветра в турбулентной атмосфере.

В зависимости от вида функции и вида аргумента различают 4 типа случайных процессов.

Таблица 2.1 Типы случайных процессов

размер лужи (непрерывнозначна довательность)

Кроме того различают:

1. Стационарный случайный процесс вероятностные характеристики которого не зависит от времени, т.е. х (х 1 , t 1 ) = х (х 2 , t 2 ) = … х (х n , t n )=const.

2. Нормальный случайный процесс (Гаусса) – совместная плотность вероятности сечений t 1 … t n – нормальная.

3. Марковский случайный процесс (процесс без последствия) состояние в каждый момент времени которого зависит только от состояния в предшествующий момент и не зависит от прежних состояний. Марковская цель – последовательность сечений марковского случайного процесса.

4. Случайный процесс типа белого шума – в каждый момент состояния не зависит от предшествующего.

Существуют и другие случайные процессы

Прежде чем дать определение случайного процесса напомним основные понятия из теории случайных величин. Как известно, случайной величиной называется величина, которая в результате опыта может принять то или иное значение, заранее неизвестное. Различают дискретные и непрерывные случайные величины. Основной характеристикой случайной величины является закон распределения, который может быть задан в виде графика или в аналитической форме. При интегральном законе распределения функция распределения , где – вероятность того, что текущее значение случайной величины меньше некоторого значения . При дифференциальном законе распределения используют плотность вероятности . Численными характеристиками случайных величин являются так называемые моменты, из которых наиболее употребительны момент первого порядка – среднее значение (математическое ожидание) случайной величины и центральный момент второго порядка – дисперсия. В случае, если имеется несколько случайных величин (система случайных величин), вводится понятие корреляционного момента.

Обобщением понятия случайной величины является понятие случайной функции , т.е. функции, которая в результате опыта может принять тот или иной вид, неизвестный заранее. Если аргументом функции является время t, то её называют случайным или стохастическим процессом .

Конкретный вид случайного процесса, полученный в результате опыта, называется реализацией случайного процесса и является обычной неслучайной (детерминированной) функцией. С другой стороны в фиксированный момент времени имеем так называемое сечение случайного процесса в виде случайной величины.

Для описания случайных процессов обобщаются естественным образом понятия теории случайных величин. Для некоторого фиксированного момента времени , случайный процесс превращается в случайную величину , для которой можно ввести функцию , называемую одномерным законом распределения случайного процесса . Одномерный закон распределения не является исчерпывающей характеристикой случайного процесса. Он, например, не характеризует корреляцию (связь) между отдельными сечениями случайного процесса. Если взять два разных момента времени и , можно ввести двумерный закон распределения и т.д. В пределах нашего дальнейшего рассмотрения будем ограничиваться в основном одномерным и двумерным законами.

Рассмотрим простейшие характеристики случайного процесса, аналогичные числовым характеристикам случайной величины. Математическое ожидание или среднее по множеству

и дисперсию

Математическое ожидание – это некоторая средняя кривая, вокруг которой группируются отдельные реализации случайного процесса, а дисперсия характеризует в каждый момент времени разброс возможных реализаций. Иногда, используется среднеквадратичное отклонение .

Для характеристики внутренней структуры случайного процесса вводится понятие корреляционной (автокорреляционной ) функции

Наряду с математическим ожиданием (среднее по множеству) (3.1) вводится ещё одна характеристика случайного процесса – среднее значение случайного процесса для отдельной реализации (среднее по времени)

Для двух случайных процессов можно также ввести понятие взаимной корреляционной функции по аналогии с (3.3).

Одним из частных случаев случайного процесса, находящих широкое применение на практике, является стационарный случайный процесс – это случайный процесс, вероятностные характеристики, которого не зависят от времени. Итак, для стационарного случайного процесса , , а корреляционная функция зависит от разности , т.е. является функцией одного аргумента .

Стационарный случайный процесс в какой-то мере аналогичен обычным или установившимся процессам в системах управления.

Стационарные случайные процессы обладают интересным свойством, которое называется эргодической гипотезой . Для стационарного случайного процесса всякое среднее по множеству равно среднему по времени. В частности, например, Это свойство позволяет часто упростить физическое и математическое моделирование систем при случайных воздействиях.

Как известно, при анализе детерминированных сигналов широкое применение находят их спектральные характеристики на базе ряда или интеграла Фурье. Аналогичное понятие можно ввести и для случайных стационарных процессов. Отличие будет заключаться в том, что для случайного процесса амплитуды гармонических составляющих будут случайными, а спектр статического случайного процесса будет описывать распределение дисперсий по различным частотам.

Спектральная плотность стационарного случайного процесса связана с его корреляционной функцией преобразованиями Фурье :

где корреляционную функцию будем трактовать как оригинал, а - как изображение.

Существуют таблицы, связывающие оригиналы и изображения . Например, если , то .

Отметим связь спектральной плотности и корреляционной функции с дисперсией D

1.1.1. Гауссовские случайные процессы

гауссовским , если все его конечномерные распределения являются нормальными, то есть

t 1 ,t 2 ,…,t n T

случайный вектор

(X(t 1);X(t 2);…;X(t n))

имеет следующую плотность распределения:

,

где a i =MX(t i); =M(X(t i)-a i) 2 ; с ij =M((X(t i)-a i)(X(t j)-a j));
;

-алгебраическое дополнение элемента с ij .

1.1.2. Случайные процессы с независимыми приращениями

с независимыми приращениями , если его приращения на непересекающихся временных промежутках не зависят друг от друга:

t 1 ,t 2 ,…,t n T:t 1 ≤t 2 ≤…≤t n ,

случайные величины

X(t 2)-X(t 1); X(t 3)-X(t 2); …; X(t n)-X(t n-1)

независимы.

1.1.3. Случайные процессы с некоррелированными приращениями

Случайный процесс X(t) называется процессомс некоррелированными приращениями, если выполняются следующие условия:

1) tT: МX 2 (t) < ∞;

2) t 1 ,t 2 ,t 3 ,t 4 T:t 1 ≤t 2 ≤t 3 ≤t 4: М((X(t 2)-X(t 1))(X(t 4)-X(t 3)))=0.

1.1.4. Стационарные случайные процессы (см. Глава 5)

1.1.5. Марковские случайные процессы

Ограничимся определением марковского случайного процесса с дискретными состояниями и дискретным временем (цепь Маркова).

Пусть система А может находиться в одном из несовместных состояний А 1 ; А 2 ;…;А n , и при этом вероятность Р ij ( s ) того, что в s -ом испытании система переходит из состояния в состояние А j , не зависит от состояния системы в испытаниях, предшествующих s -1-ому. Случайный процесс данного типа называется цепью Маркова.

1.1.6. Пуассоновские случайные процессы

Случайный процесс X(t) называетсяпуассоновским процессом с параметром а (а>0), если он обладает следующими свойствами:

1) tT; Т=}

Похожие статьи