Понятие отношения на множестве. Свойства отношений на множестве Отношения на множествах и их свойства

12.07.2020

Чтобы определить общее понятие бинарного отношения на множестве, поступим так же, как и в случае с соответствиями,

т.е. рассмотрим сначала конкретный пример. Пусть на множестве X = {2, 4, 6, 8} задано отношение «меньше». Это означает, что для любых двух чисел из множества X можно сказать, какое из них меньше: 2 < 4, 2 < 6, 2 < 8, 4 < 6, 4 < 8, 6 < 8. Полученные неравенства можно записать иначе, в виде упорядоченных пар: (2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8). Но все эти пары есть элементы декартова произведения X х X, поэтому об отношении «меньше», заданном на множестве X, можно сказать, что оно является подмножеством множества X х X.

Вообще бинарные отношения на множестве X определяют следующим способом:

Определение. Бинарным отношением на множестве X называется всякое подмножество декартова произведения X х X.

Так как в дальнейшем мы будем рассматривать только бинарные отношения, то слово «бинарные», как правило, будем опускать.

Условимся отношения обозначать буквами R, S, Т, Р и др.

Если R - отношения на множестве X, то, согласно определению, R X х X. С другой стороны, если задано некоторое подмножество множества X х X, то оно определяет на множестве X некоторое отношение R.

Утверждение о том, что элементы х и у находятся в отношении R, можно записывать так: (х, у) R или x R y. Последняя запись читается: «Элемент х находится в отношении R с элементом у».

Отношения задают так же, как соответствия. Отношение можно задать, перечислив пары элементов множества X, находящиеся в этом отношении. Формы представления таких пар могут быть различными - они аналогичны формам задания соответствий. Отличия касаются задания отношений при помощи графа.

Построим, например, граф отношений «меньше», заданного на множестве Х= (2, 4, 6, 8}. Для этого элементы множества X изобразим точками (их называют вершинами графа), а отношение «меньше» - стрелкой (рис. 1).

На том же множестве X можно рассмотреть другое отношение - «кратно». Граф этого отношения будет в каждой вершине иметь петлю (стрелку, начало и конец которой совпадают), так как каждое число кратно самому себе (рис. 2).

Отношение можно задать при помощи предложения с двумя переменными. Так, например, заданы рассмотренные выше отношения «меньше» и «кратно», причем использована краткая форма предложений «число х меньше числа у» и «число х кратно числу у». Некоторые такие предложения можно записывать, используя символы. Например, отношения «меньше» и «кратно» можно было задать в таком виде: «х<у», «х у». Отношение «х больше у на 3» можно записать в виде равенства х = у + 3 (или х – у = 3).

Для отношения R, заданного на множестве X, всегда можно задать отношение R -1 , ему обратное, - оно определяется так же, как соответствие, обратное данному. Например, если R - отношение «х меньше у», то обратным ему будет отношение «у больше х».

Понятием отношения, обратного данному, часто пользуются при начальном обучении математике. Например, чтобы предупредить ошибку в выборе действия, с помощью которого решается задача: «У Пети 7 карандашей, что на 2 меньше, чем у Бори. Сколько карандашей у Бори?» - ее переформулируют: «У Пети 7 карандашей, а у Бори на 2 больше. Сколько карандашей у Бори?» Видим, что переформулировка свелась к замене отношения «меньше на 2» обратным ему отношением «больше на 2».

Свойства отношений

Мы установили, что бинарное отношение на множестве X представляет собой множество упорядоченных пар элементов, принадлежащих декартову произведению ХхХ. Это математическая сущность всякого отношения. Но, как и любые другие понятия, отношения обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые. Рассмотрим на множестве отрезков, представленных на рис. 3, отношения перпендикулярности, равенства и «длиннее». Построим графы этих отношений (рис. 4) и будем их сравнивать.

Видим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отношение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлексивности или просто, что оно рефлексивно .

Определение. Отношение R на множестве X называется рефлексивным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х <=> xRx для любого х X

Если отношение R рефлексивно на множестве X, то в каждой вершине графа данного отношения имеется петля. Справедливо и обратное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подобен самому себе).

Существуют отношения, которые свойством рефлексивности на обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе. Поэтому на графе отношения перпендикулярности (рис. 4) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярности и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направлении. Эта особенность графа отражает те свойства, которыми обладают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;

Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков говорят, что они обладают свойством симметричности или, просто симметричны.

Определение. Отношение R на множестве X называется симметричным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на X <=> (xRy => yRx)

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к х. Справедливо и обратное утверждение. Граф, содержащий вместе с каждой стрелкой, идущей от х к у, и стрелку, идущую от у к х, является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных отношений присоединим еще такие:

Отношение параллельности на множестве прямых (если прямая х параллельна прямой у, то и прямая у параллельна прямой х);

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на множестве отрезков. Действительно, если отрезок х длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметричности или просто антисимметрично.

Определение. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится .

антисимметрично на X <=> (xRy и х≠у => )

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого соединены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством антисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может быть больше х);

Отношение «больше на 2» для чисел (если х больше у на 2, то у не может быть больше на 2 числа х).

Существуют отношения, не обладающие ни свойством симметричности, ни свойством антисимметричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 5. Он показывает, что данное отношение не обладает ни свойством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отношения «длиннее» (рис. 4). На нем можно заметить: если стрелки проведены от е к а и от а к с , то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с , то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзитивным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом z, следует, что элемент х находится в отношении R с элементом z.

Используя символы, это определение можно записать в таком виде:

R транзитивно на X <=> (xRy и yRz => xRz)

Граф транзитивного отношения с каждой парой стрелок, идущих от х к у и у к z , содержит стрелку, идущую от х к z . Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z , то отрезок х равен отрезку z . Это свойство отражено и на графе отношения равенства (рис. 4)

Существуют отношения, которые свойством транзитивности не обладают. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свойством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связанным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находится в отношении R с элементом у, либо элемент у находится в отношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связанно на множестве X <=> (х≠у xRy или yRx)

Например, свойством связанности обладают отношения «больше» для натуральных чисел: для любых различных чисел х и у можно утверждать, что либо х> у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обладают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа хну, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отношения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, заданном на множестве отрезков (рис. 4), то получается, что оно рефлексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности-симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве

отрезков связанными не являются.

Задача 1. Сформулировать свойства отношения R, заданного при помощи графа (рис. 6).

Решение. Отношение R- антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с , на графе есть стрелка, идущая от b к с .

Отношение R - связанно, так как любые две вершины соединены стрелкой.

Отношение R свойством рефлексивности не обладает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число у не больше числа х в 2 раза.

Данное отношение не обладает свойством рефлексивности, потому что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число х больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связанности не обладает, так как существуют пары таких чисел х и у, что ни число не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3,5 и 8 и др.

В повседневной жизни нам постоянно приходится сталкиваться с понятием «отношения». Отношения – один из способов задания взаимосвязей между элементами множества.

Унарные (одноместные) отношения отражают наличие какого-то одного признака R у элементов множества M (например, «быть красным» на множестве шаров в урне).

Бинарные (двуместные) отношения используются для определения взаимо

связей, которыми характеризуются пары элементов во множестве M .

Например, на множестве людей могут быть заданы следующие отношения: «жить в одном городе», «x работает под руководством y », «быть сыном», «быть старше» и т.д. на множестве чисел: «число a больше числа b », «число a является делителем числа b », «числа a и b дают одинаковый остаток при делении на 3».

В прямом произведении , где A - множество студентов какого-либо вуза, B - множество изучаемых предметов, можно выделить большое подмножество упорядоченных пар (a, b) , обладающих свойством: «студент a изучает предмет b ». Построенное подмножество отражает отношение «изучает», возникающее между множествами студентов и предметов. Число примеров можно продолжить

Отношения между двумя объектами являются предметом исследования экономики, географии, биологии, физики, лингвистики, математики и других наук.

Для строгого математического описания любых связей между элементами двух множеств вводится понятие бинарного отношения.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения .

Пример 5 . Пусть , .

Пусть R 1 задано на перечислением упорядоченных пар: . Бинарное отношение R 2 на множестве задано с помощью правила: упорядочена пара , если a делится на b . Тогда R 2 состоит из пар: .

Бинарные отношения, из примера 2, R 1 и R 2 изображены графически на рис. 6 и рис.7.

Рис. 6 Рис. 7

Чтобы изобразить бинарное отношение с помощью стрелок, слева изображаются точками элементы множества A , справа - множества B . Для каждой пары (a, b) , содержащейся в бинарном отношении R , проводится стрелка от a к b , . Графическое изображение бинарного отношения R 1 , приведенного в примере 6, показано на рис.8.

Рис.8

Бинарные отношения на конечных множествах могут быть заданы матрицами. Предположим, что задано бинарное отношение R между множествами A и B . , .

Строки матрицы нумеруются элементами множества A , а столбцы – элементами множества B . Ячейку матрицы, стоящую на пересечении i - ой строки и j - ого столбца принято обозначать через C ij , а заполняется она следующим образом:

Полученная матрица будет иметь размер .

Пример 6. Пусть задано множество . На множестве задайте списком и матрицей отношение R – «быть строго меньше».

Отношение R как множество содержит все пары элементов (a , b) из M такие, что .

Матрица отношения, построенная по вышеуказанным правилам, имеет следующий вид:

Свойства бинарных отношений:

1. Бинарное отношение R на множестве называетсярефлексивным , если для любого элемента a из M пара (a, a) принадлежит R , т.е. имеет место для любого a из M :

Отношения «жить в одном городе», «учиться в одном вузе», «быть не больше» являются рефлексивными.

2. Бинарное отношение называется антирефлексивным ,если оно не обладает свойством рефлексивности для любых a :

Например, «быть больше», «быть младше» - это антирефлексивные отношения .

3. Бинарное отношение R называется симметричным , если для любых элементов a и b из M из того, что пара (a, b) принадлежит R , , вытекает, что пара (b, a) принадлежит R , т.е.

Симметрична параллельность прямых, т.к. если // , то // . Симметрично отношение «быть равным» на любом множестве или «быть взаимнопростым на N».

Отношение R симметрично тогда и только тогда, когда R=R -1

4. Если для несовпадающих элементов верно отношение , но ложно , то отношение антисимметрично . Можно сказать иначе:

Антисимметричными являются отношения «быть больше», «быть делителем на N», «быть младше».

5. Бинарное отношение R называется транзитивным , если для любых трех элементов из того, что пары (a, b) и (b, c) принадлежат R , следует, что пара (a, c) принадлежит R :

Транзитивны отношения : «быть больше», «быть параллельным», «быть равным» и др.

6. Бинарное отношение R антитранзитивно , если оно не обладает свойством транзитивности.

Например, «быть перпендикулярным» на множестве прямых плоскости ( , , но неверно, что ).

Т.к. бинарное отношение может быть задано не только прямым перечислением пар, но и матрицей, то целесообразно выяснить, какими признаками характеризуется матрица отношения R , если оно: 1) рефлексивно, 2) антирефлексивно, 3)симметрично, 4) антисимметрично, 5) транзитивно.

Пусть R задано на , .R либо выполняется в обе стороны, либо не выполняется вообще. Таким образом, если в матрице стоит единица на пересечении i - ой строки и j - ого столбца, т.е. C ij =1, то она должна стоять и на пересечении j - ой строки и i - ого столбца, т.е. C ji =1, и наоборот, если C ji =1, то C ij =1. Таким образом, матрица симметричного отношения симметрична относительно главной диагонали.

4. R антисимметрично, если из и следует: . Это означает, что в соответствующей матрице ни для каких i , j не выполняется C ij = C ji =1. Таким образом, в матрице антисимметричного отношения отсутствуют единицы, симметричные относительно главной диагонали .

5. Бинарное отношение R на непустом множестве A называется транзитивным если

Вышеприведенное условие должно выполняться для любых элементов матрицы. И, наоборот, если в матрице R имеется хотя бы один элемент C ij =1, для которого данное условие не выполняется, то R не транзитивно.

Лекция 3.

п.3. Отношения на множествах. Свойства бинарных отношений.

3.1. Бинарные отношения .

Когда говорят о родстве двух людей, например, Сергей и Анна, то подразумевают, что есть некая семья, к членам которой они относятся. Упорядоченная пара (Сергей, Анна) отличается от других упорядоченных пар людей тем, что между Сергеем и Анной есть некое родство (кузина, отец и т. д.).

В математике среди всех упорядоченных пар прямого произведения двух множеств A и B (A ´B ) тоже выделяются «особые» пары в связи с тем, что между их компонентами есть некоторые «родственные» отношения, которых нет у других. В качестве примера рассмотрим множество S студентов какого-нибудь университета и множество K читаемых там курсов. В прямом произведении S ´K можно выделить большое подмножество упорядоченных пар (s , k ), обладающих свойством: студент s слушает курс k . Построенное подмножество отражает отношение «… слушает …», естественно возникающее между множествами студентов и курсов.

Для строгого математического описания любых связей между элементами двух множеств введем понятие бинарного отношения.

Определение 3.1. Бинарным (или двухместным ) отношением r между множествами A и B называется произвольное подмножество A ´B , т. е.

В частности, если A= B (то есть rÍA 2), то говорят, что r есть отношение на множестве A.

Элементы a и b называются компонентами (или координатами ) отношения r.

Замечание. Договоримся, что для обозначения отношений между элементами множеств использовать греческий алфавит : r, t, j, s, w и т. д.


Определение 3.2. Областью определения D r={a | $ b , что a rb } (левая часть). Областью значений бинарного отношения r называется множество R r={b | $ a , что a rb } (правая часть).

Пример 3. 1. Пусть даны два множества A ={1; 3; 5; 7} и B ={2; 4; 6}. Отношение зададим следующим образом t={(x ; y A ´B | x+ y =9}. Это отношение будет состоять из следующих пар (3; 6), (5; 4) и (7; 2), которые можно записать в виде t={(3; 6), (5; 4), (7;2)}. В данном примере D t={3; 5; 7} и R t= B ={2; 4; 6}.

Пример 3. 2. Отношение равенства на множестве действительных чисел есть множество r={(x ; y ) | x и y – действительные числа и x равно y }. Для этого отношения существует специальное обозначение «=». Область определения совпадает с областью значений и является множеством действительных чисел, D r= R r.

Пример 3. 3. Пусть A – множество товаров в магазине, а B – множество действительных чисел. Тогда j={(x ; y A ´B | y – цена x } – отношение множеств A и B .

Если обратить внимание на пример 3.1., то можно заметить, что данное отношение было задано сначала в виде t={(x ; y A ´B | x+ y =9}, а потом записано в виде t={(3; 6), (5;4), (7;2)}. Это говорит о том, что отношения на множествах (или одном множестве) можно задавать различными способами. Рассмотрим способы задания бинарных отношений.

Способы задания отношений:

1) с помощью подходящего предиката;

2) множество упорядоченных пар;

3) в графической форме: пусть A и B – два конечных множества и r – бинарное отношение между ними. Элементы этих множеств изображаем точками на плоскости. Для каждой упорядоченной пары отношения r рисуют стрелку, соединяющую точки, представляющие компоненты пары. Такой объект называется ориентированным графом или орграфом , точки же, изображающие элементы множеств, принято называть вершинами графа .

4) в виде матрицы: пусть A ={a 1, a 2, …, an } и B ={b 1, b 2, …, bm }, r – отношение на A ´B . Матричным представлением r называется матрица M =[mij ] размера n ´m , определенная соотношениями

.

Кстати, матричное представление является представлением отношения в компьютере.

Пример 3. 4. Пусть даны два множества A ={1; 3; 5; 7}и B ={2; 4; 6}. Отношение задано следующим образом t={(x ; y ) | x+ y =9}. Задать данное отношение как множество упорядоченных пар, орграфом, в виде матрицы.

Решение. 1) t={(3; 6), (5; 4), (7; 2)} - есть задание отношения как множества упорядоченных пар;

2) соответствующий ориентированный граф показан на рисунке.

https://pandia.ru/text/78/250/images/image004_92.gif" width="125" height="117">. ,

Пример 3. 5 . Еще в качестве примера можно рассмотреть предложенную Дж. фон Нейманом (1903 – 1957) блок-схему ЭВМ последовательного действия, которая состоит из множества устройств M :

,

где a – устройство ввода, b – арифметическое устройство (процессор), c – устройство управления, d – запоминающее устройство, e – устройство вывода.

Рассмотрим информационный обмен между устройствами mi и mj , которые находятся в отношении r, если из устройства mi поступает информация в устройство mj .

Это бинарное отношение можно задать перечислением всех его 14 упорядоченных пар элементов:

Соответствующий орграф, задающий это бинарное отношение, представлен на рисунке:


Матричное представление этого бинарного отношения имеет вид:

. ,

Для бинарных отношений обычным образом определены теоретико-множественные операции: объединение, пересечение и т. д.


Введем обобщенное понятие отношения.

Определение 3.3. n-местное (n -арное ) отношение r – это подмножество прямого произведения n множеств, то есть множество упорядоченных наборов (кортежей )

A 1´…´An ={(a 1, …, an )| a A 1Ù … Ùan ÎAn }

Многоместные отношения удобно задавать с помощью реляционных таблиц . Такое задание соответствует перечислению множества n -к отношения r. Реляционные таблицы широко используются в компьютерной практике в реляционных базах данных . Заметим, что реляционные таблицы нашли применение в повседневной практике. Всевозможные производственные, финансовые, научные и другие отчеты часто имеют форму реляционных таблиц.

Слово «реляционная » происходит от латинского слова relation , которое в переводе на русский язык означает «отношение». Поэтому в литературе для обозначения отношения используют букву R (латинскую) или r (греческую).

Определение 3.4. Пусть rÍA ´B есть отношение на A ´B. Тогда отношение r-1 называется обратным отношением к данному отношению r на A ´B , которое определяется следующим образом:

r-1={(b , a ) | (a , b )Îr}.

Определение 3.5. Пусть r ÍA ´B есть отношение на A ´B, а s ÍB ´C – отношение на B ´C. Композицией отношений s и r называется отношение t ÍA ´C ,которое определяется следующим образом:

t=s◦r= {(a , c )| $ b Î B, что (a , b )Îr и (b , c )Îs}.

Пример 3. 6 . Пусть , и C ={, !, d, à}. И пусть отношение r на A ´B и отношение s на B ´C заданы в виде:

r={(1, x ), (1, y ), (3, x )};

s={(x ,), (x , !), (y , d), (y , à)}.

Найти r-1 и s◦r, r◦s.

Решение. 1) По определению r-1={(x , 1), (y , 1), (x , 3)};

2) Используя определение композиции двух отношений, получаем

s◦r={(1,), (1, !), (1, d), (1, à), (3,), (3, !)},

поскольку из (1, x )Îr и (x ,)Îs следует (1,)Îs◦r;

из (1, x )Îr и (x , !)Îs следует (1, !)Îs◦r;

из (1, y )Îr и (y , d)Îs следует (1, d)Îs◦r;

из (3, x )Îr и (x , !)Îs следует (3, !)Îs◦r.

Теорема 3.1. Для любых бинарных отношений выполняются следующие свойства:

2) ;

3) - ассоциативность композиции.

Доказательство. Свойство 1 очевидно.

Докажем свойство 2. Для доказательства второго свойства покажем, что множества, записанные в левой и правой частях равенства, состоят из одних и тех же элементов. Пусть (a ; b ) Î (s◦r)-1 Û (b ; a ) Î s◦r Û $ c такое, что (b ; c ) Î r и (c ; a ) Î s Û $ c такое, что (c ; b ) Î r-1 и (a ; c ) Î s-1 Û (a ; b ) Î r -1◦s -1.

Свойство 3 доказать самостоятельно.

3.2. Свойства бинарных отношений .

Рассмотрим специальные свойства бинарных отношений на множестве A .

Свойства бинарных отношений.

1. Отношение r на A ´A называется рефлексивным , если (a ,a ) принадлежит r для всех a из A .

2. Отношение r называется антирефлексивным , если из (a ,b )Îr следует a ¹b .

3. Отношение r симметрично , если для a и b , принадлежащих A , из (a ,b )Îr следует, что (b ,a )Îr.

4. Отношение r называется антисимметричным , если для a и b из A , из принадлежности (a ,b ) и (b ,a ) отношению r следует, что a =b .

5. Отношение r транзитивно , если для a , b и c из A из того, что (a ,b )Îr и (b ,c )Îr, следует, что (a ,c )Îr.

Пример 3. 7. Пусть A ={1; 2; 3; 4; 5; 6}. На этом множестве задано отношение rÍA 2, которое имеет вид: r={(1, 1), (2, 2), (3, 3), (4; 4), (5; 5), (6; 6), (1; 2), (1; 4), (2; 1), (2;4), (3;5), (5; 3), (4; 1), (4; 2)}. Какими свойствами обладает данное отношение?

Решение. 1) Это отношение рефлексивно, так как для каждого a ÎA , (a ; a )Îr.

2) Отношение не является антирефлексивным, так как не выполняется условие этого свойства. Например, (2, 2)Îr, но отсюда не следует, что 2¹2.

3) Рассмотрим все возможные случаи, показав, что отношение r является симметричным:

(a , b )Îr

(b , a )

(b , a )Îr?

4) Данное отношение не является антисимметричным, поскольку (1, 2)Îr и (2,1)Îr, но отсюда не следует, что 1=2.

5) Можно показать, что отношение r транзитивно, используя метод прямого перебора.

(a , b )Îr

(b , c )Îr

(a , c )

(a , c )Îr?

Как по матрице представления

определить свойства бинарного отношения

1. Рефлексивность: на главной диагонали стоят все единицы, звездочками обозначены нули или единицы.

.

2. Антирефлексивность: на главной диагонали все нули.

3. Симметричность: если .

4. Антисимметричность: все элементы вне главной диагонали равны нулю; на главной диагонали тоже могут быть нули.

.

Операция «*» выполняется по следующему правилу: , где , .

5. Транзитивность: если . Операция «◦» выполняется по обычному правилу умножения, при этом надо учитывать: .

3.3 Отношение эквивалентности. Отношение частичного порядка.

Отношение эквивалентности является формализацией такой ситуации, когда говорят о сходстве (одинаковости) двух элементов множества.

Определение 3.6. Отношение r на A есть отношение эквивалентности , если оно рефлексивно, симметрично и транзитивно. Отношение эквивалентности a rb часто обозначается: a ~ b .

Пример 3. 8 . Отношение равенства на множестве целых чисел есть отношение эквивалентности.

Пример 3. 9 . Отношение «одного роста» есть отношение эквивалентности на множестве людей X .

Пример 3. 1 0 . Пусть ¢ - множество целых чисел. Назовем два числа x и y из ¢ сравнимыми по модулю m (m Î¥) и запишем , если равны остатки этих чисел от деления их на m , т. е. разность (x -y ) делится на m .

Отношение «сравнимых по модулю m целых чисел» есть отношение эквивалентности на множестве целых числе ¢. В самом деле:

это отношение рефлексивно, т. к. для "x ΢ имеем x -x =0, и, следовательно, оно делится на m ;

это отношение симметрично, т. к. если (x -y ) делится на m , то и (y -x ) тоже делится на m ;

это отношение транзитивно, т. к. если (x -y ) делится на m , то для некоторого целого t 1 имеем https://pandia.ru/text/78/250/images/image025_23.gif" width="73" height="24 src=">, отсюда , т. е. (x -z ) делится на m .

Определение 3.7. Отношение r на A есть отношение частичного порядка , если оно рефлексивно, антисимметрично и транзитивно и обозначается символом °.

Частичный порядок важен в тех ситуациях, когда мы хотим как-то охарактеризовать старшинство. Иными словами, решить при каких условиях считать, что один элемент множества превосходит другой.

Пример 3. 11 . Отношение x £y на множестве действительных чисел есть отношение частичного порядка. ,

Пример 3. 1 2 . Во множестве подмножеств некоторого универсального множества U отношение A ÍB есть отношение частичного порядка.

Пример 3. 1 3 . Схема организации подчинения в учреждении есть отношение частичного порядка на множестве должностей.

Прообразом отношения частичного порядка является интуитивное понятие отношения предпочтения (предшествования). Отношение предпочтения выделяет класс задач, которые можно объединить, как задача о проблеме выбора наилучшего объекта .

Формулировка задачи: пусть имеется совокупность объектов A и требуется сравнить их по предпочтительности, т. е. задать отношение предпочтения на множестве A и определить наилучшие объекты.

Отношение предпочтения P , которое можно определить как «aPb , a , b ÎA Û объект a не менее предпочтителен, чем объект b » является по смыслу рефлексивным и антисимметричным (каждый объект не хуже самого себя, и, если объект a не хуже b и b не хуже a , то они одинаковы по предпочтительности). Естественно считать, что отношение P транзитивно (хотя в случае, когда, например, предпочтения обсуждаются группой лиц с противоположными интересами, это свойство может быть нарушено), т. е. P – отношение частичного порядка.

Один из возможных способов решения задачи сравнения объектов по предпочтительности – ранжирование , т. е. упорядочение объектов в соответствии с убыванием их предпочтительности или равноценности. В результате ранжирования мы выделяем «наилучшие» или «наихудшие» с точки зрения отношения предпочтения объекты.

Области применения задачи о проблеме выбора наилучшего объекта: теория принятия решений, прикладная математика, техника, экономика, социология, психология.

Пусть задано некоторое непустое множество А и R – некоторое подмножество декартова квадрата множества А: R A A .

Отношением R на множестве А называют подмножество множества А А (или А 2 ). Таким образом отношение есть частный случай соответствия, где область прибытия совпадает с областью отправления. Так же, как и соответствие, отношение – это упорядоченные пары, где оба элемента принадлежат одному и тому же множеству.

R  A  A = {(a, b) | aA, bA, (a, b)R}.

Тот факт, что (a , b )R можно записать так: a R b . Читается: «а находится в отношении R к b » или «между а и b имеет место отношение R». В противном случае записывают: (a , b )R или a R b .

Примером отношений на множестве чисел являются следующие: «=», «», «», «>» и т.д. На множестве сотрудников какой-либо фирмы ‑ отношение «быть начальником» или «быть подчинённым», на множестве родственников – «быть предком», «быть братом», «быть отцом» и т.д.

Рассмотренные отношения носят название бинарных (двухместных) однородных отношений и являются важнейшими в математике. Наряду с ними рассматривают также п -местные или п -арные отношения:

R  A  A … A = A n = {(a 1 , a 2 ,…a n) | a 1 , a 2 ,…a n  A}.

Поскольку отношение есть частный случай соответствия, для их задания могут быть использованы все ранее описанные способы.

Очевидно, что задавая отношение матричным способом, мы получим квадратную матрицу.

При геометрическом (графическом) изображении отношения мы получим схему, включающую:

    вершины, обозначаемые точками или кружочками, которые соответствуют элементам множества,

    и дуги (линии), соответствующие парам элементов, входящих в бинарные отношения, обозначаемые линиями со стрелками, направленными от вершины, соответствующей элементу a к вершине, соответствующей элементу b , если a R b .

Такая фигура называется ориентированным графом (или орграфом) бинарного отношения.

Задача 4.9.1 . Отношение R «быть делителем на множестве M = {1, 2, 3, 4 }» может быть задано матрицей :

перечислением: R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), ((4,4)};

геометрически (графически) :

1. Выписать упорядоченные пары, принадлежащие следующим бинарным отношениям на множестве А = {1, 2, 3, 4, 5, 6, 7}:

    R1 = {(x, y)| x, yA; x + y = 9};

    R2 = {(x, y)| x, yA; x < y}.

2. Отношение R на множестве X = {a, b, c, d} задано матрицей

,

у которой порядок строк и столбцов соответствует порядку выписанных элементов. Перечислить упорядоченные пары, принадлежащие данному отношению. Изобразить отношение с помощью графа.

3. Отношение на множестве А = {1, 2, 3, 4} представлено графом. Необходимо:

    перечислить упорядоченные пары, принадлежащие R;

    выписать соответствующую матрицу;

    определить это отношение с помощью предикатов.

(ответ: a-b= 1).

4.10. Основные типы (свойства) бинарных отношений

Пусть задано бинарное отношение R на множестве А 2 : R  A  A = {(a , b ) | a A, b A, (a , b )R}

    Бинарное отношение R на множестве А называется рефлексивным , если для любого a А выполняется a R a , то есть (а , а )R. Главная диагональ матрицы рефлексивного отношения состоит из единиц. Граф рефлексивного отношения обязательно имеет петли у каждой вершины.

Примеры рефлексивных отношений: , =,  на множестве действительных чисел, «не быть начальником» на множестве сотрудников.

    Бинарное отношение R на множестве А называется антирефлексивным (иррефлексивным ), если для любого a А не выполняется отношение a R a , то есть (а , а )R. Главная диагональ матрицы иррефлексивного отношения состоит из нулей. Граф иррефлексивного отношения не имеет петель.

Примеры антирефлексивных отношений: <, > на множестве действительных чисел, перпендикулярность прямых на множестве прямых.

    Бинарное отношение R на множестве A называется симметричным , если для любых a , b А из a R b следует b R a , то есть если (a , b )R , то и(b , a )R . Матрица симметричного отношения симметрична относительно своей главной диагонали (σ ij = σ ji ). Граф симметричного отношения не является ориентированным (рёбра изображаются без стрелок). Каждая пара вершин здесь соединена неориентированным ребром.

Примеры симметричных отношений:  на множестве действительных чисел, «быть родственником» на множестве людей.

    Бинарное отношение R на множестве A называется:

    анти симметричным , если для любых a , b А из a R b и b R a следует, что a =b . То есть, если (a , b )R и(b , a )R , то отсюда вытекает, что a =b . Матрица антисимметричного отношения вдоль главной диагонали имеет все единицы и не имеет ни одной пары единиц, расположенных на симметричных местах по отношению к главной диагонали. Иными словами, все σ ii =1, и если σ ij =1, то обязательно σ ji =0. Граф антисимметричного отношения имеет петли у каждой вершины, а вершины соединяются только одной направленной дугой.

Примеры антисимметричных отношений: , ,  на множестве действительных чисел; ,  на множествах;

    а симметричным , если для любых a , b А из a R b следует невыполнение b R a , то есть если (a , b )R , то (b , a )R . Матрица асимметричного отношения вдоль главной диагонали имеет нули (σ ij =0) все и ни одной симметричной пары единиц (если σ ij =1, то обязательно σ ji =0). Граф асимметричного отношения не имеет петель, а вершины соединены одной направленной дугой.

Примеры асимметричных отношений: <, > на множестве действительных чисел, «быть отцом» на множестве людей.

    Бинарное отношение R на множестве A называется транзитив ным , если для любых a , b , с А из a R b и b R a следует, что и a R с . То есть если (a , b )R и(b , с )R вытекает, что (а , с )R . Матрица транзитивного отношения характеризуется тем, что если σ ij =1 и σ jm =1, то обязательно σ im =1. Граф транзитивного отношения таков, что если соединены дугами, например, первая-вторая и вторая-третья вершины, то обязательно есть дуги из первой в третью вершину.

Примеры транзитивных отношений: <, , =, >,  на множестве действительных чисел; «быть начальником» на множестве сотрудников.

    Бинарное отношение R на множестве A называется антитранзитив ным , если для любых a , b , с А из a R b и b R a следует, что не выполняется a R с . То есть если (a , b )R и(b , с )R вытекает, что (а , с )R . Матрица антитранзитивного отношения характеризуется тем, что если σ ij =1 и σ jm =1, то обязательно σ im =0. Граф антитранзитивного отношения таков, что если соединены дугами, например, первая-вторая и вторая-третья вершины, то обязательно нет дуги из первой в третью вершину.

Примеры антитранзитивных отношений : «несовпадение чётности» на множестве целых чисел; «быть непосредственным начальником» на множестве сотрудников.

Если отношение не обладает некоторым свойством, то, добавив недостающие пары, можно получить новое отношение с данным свойством. Множество таких недостающих пар называют замыканием отношения по данному свойству. Обозначают его как R * . Так можно получить рефлексивное, симметричное и транзитивное замыкание.

Задача 4.10.1. На множестве А = {1, 2, 3, 4} задано отношение R={(a ,b )| a ,b A, a +b чётное число}. Определить тип данного отношения.

Решение. Матрица данного отношения:

. Очевидно, что отношение является рефлексивным , так как вдоль главной диагонали расположены единицы. Оно симметрично : σ 13 = σ 31 , σ 24 = σ 42 . Транзитивно : (1,3)R, (3,1)R и (1,1)R; (2,4)R, (4,2)R и (2,2)R и т.д.

Задача 4.10.2. Какими свойствами на множестве А = {a , b , c , d } обладает бинарное отношение R = {(a ,b ), (b ,d ), (a ,d ), (b ,a ), (b ,c )}?

Решение . Построим матрицуданного отношения и его граф:

Отношение иррефлексивно , так как все σ ii = 0. Оно не симметрично , так как σ 23 =1, а σ 32 =0, однако σ 12 =σ 21 =1. Отношение не транзитивно , поскольку σ 12 =1, σ 23 =1 и σ 13 =0; σ 12 =1, σ 21 =1 и σ 11 =0; но при этом σ 12 =1, σ 24 =1 и σ 14 =1.

Задача 4.10.3. На множестве А = {1,2,3,4,5} задано отношение R = {(1,2), (2,3), (2,4), (4,5)}. Определить тип отношения и найти следующие замыкания для R:

    рефлексивное;

    симметричное;

    транзитивное.

Решение. Отношение иррефлексивно, поскольку нет ни одного элемента вида (а ,а ). Асимметрично, так как не содержит пар вида (a ,b ) и (b ,a ) и все диагональные элементы равны 0. Антитранзитивно, поскольку (1,2)R, (2,3)R, но (1,3)R. Аналогично (2,4)R, (4,5)R, а (2,5)R и т.д.

    рефлексивное замыкание данного отношения R * ={(1,1), (2,2), (3,3), (4,4), (5,5)};

    симметричное замыкание: R*={(2,1), (3,2), (4,2), (5,4)};

    транзитивное замыкание: R*={(1,3), (1,4), (2,5)}. Рассмотрим граф исходного отношения и полученного транзитивного.

Задачи для самостоятельного решения.

1. Задано отношение R = {(1,1), (1,2), (1,3), (3,1), (2,3)}. Определить его тип и найти замыкания по рефлексивности, симметричности и транзитивности.

2.Отношение на множестве слов русского языка определено следующим образом: а Rb тогда и только тогда, когда они имеют хоть одну общую букву. Определить тип отношения на множестве А = {корова, вагон, нить, топор}.

3. Указать примеры бинарных отношений на множестве А = {1, 2) и В = {1, 2, 3}, которые были бы:

    не рефлексивное, не симметричное, не транзитивное;

    рефлексивное, не симметричное, не транзитивное;

    симметричное, но не рефлексивное и не транзитивное;

    транзитивное, но не рефлексивное и не симметричное;

    рефлексивное, симметричное, но не транзитивное;

    рефлексивное, транзитивное, но не симметричное;

    не рефлексивное, симметричное, транзитивное;

    рефлексивное, симметричное, транзитивное.

Язык T-SQL в SQL Server базируется на стандартном языке SQL, основанном на реляционной модели, которая, в свою очередь, базируется на математических основаниях, таких как теория множеств и логика предикатов. В данной статье рассматривается фундаментальная тема из теории множеств: свойства отношений на множествах. Предлагаемые коды T-SQL читатели смогут использовать для проверки наличия определенных свойств тех или иных отношений. Но можно еще попробовать написать собственные версии сценариев (чтобы определить, обладает ли отношение конкретным свойством), прежде чем применять описанные в статье решения.

Множества и отношения

Георг Кантор, создатель теории множеств, определяет множество как «объединение в некое целое M совокупности определенных хорошо различимых объектов m нашего созерцания или мышления (которые будут называться элементами множества M)». Элементами множества могут быть объекты произвольной природы: люди, цифры и даже сами множества. Символы ∈ и ∉ обозначают, соответственно операторы, отражающие принадлежность (вхождение, членство) и непринадлежность элемента множеству. Так, запись x ∈ V означает, что x является элементом множества V, а запись x ∉ V - что x не является элементом V.

Бинарным отношением на множестве называется множество упорядоченных пар элементов исходного множества. Так, для множества элементов V = {a, b, c}, бинарным отношением R на данном множестве V будет произвольное подмножество множества всех упорядоченных пар декартова произведения V × V = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}. Отношение R = {(a, b), (b, c), (a, c)} является допустимым бинарным отношением на V. Можно сказать, что a соотносится с b посредством R. Предположим, что R = {(a, b), (b, c), (c, d)}. Такое R не является допустимым отношением на V, поскольку пара (c, d) не принадлежит декартову произведению V × V. Заметим, что порядок указания элементов, входящих во множество, не важен. Множество V может быть задано как {a, b, c} или как {b, a, c} и так далее. Однако порядок в упорядоченных парах, например в (a, b) бинарного отношения, важен; таким образом (a, b) ≠ (b, a).

В качестве более реального примера бинарного отношения рассмотрим множество F членов семьи: {Ицик, Микки, Инна, Мила, Габи}. Микки - брат-близнец Ицика, Инна - его старшая сестра, Мила - мама, а Габи - отец. Примером отношения R на множестве F будет: «является братом». Элементы этого отношения суть {(Ицик, Микки), (Микки, Ицик), (Ицик, Инна), (Микки, Инна)}. Отмечаем, что упорядоченная пара (Ицик, Инна) появляется в R, а пара (Инна, Ицик) - нет. Хотя Ицик - брат Инны, она ему братом не приходится.

Свойства отношений на множествах

Теперь, когда мы освежили наши представления о множествах и отношениях, приступим к теме статьи - свойствам отношений на множествах. В качестве данных для примера обратимся к кодам листинга 1, чтобы создать таблицы V и R. V будет представлять множество, а R - бинарное отношение на нем. Используйте код листинга 2 для создания процедуры ClearTables, с помощью которой сможете очистить от записей обе эти таблицы перед их заполнением новыми образцами данных. Наконец, используйте коды листингов 3, 4 и 5 для наполнения таблиц V и R различными наборами данных для тестирования (будем их называть примерами данных 1, 2 и 3 соответственно).

Рефлексивность. Отношение R на множестве V является рефлексивным, если для любого элемента v множества V, v ∈ V, следует, что (v, v) ∈ R, то есть пара (v, v) всегда принадлежит R. А отношение R на V не рефлексивно, если найдется такой элемент v ∈ V, что пара (v, v) ∉ R. Вновь рассмотрим пример множества F - членов моей семьи.

Отношение «иметь одинаковый возраст с» на F, очевидным образом, рефлексивно. Элементами отношения будут следующие пары: {(Ицик, Ицик), (Ицик, Микки), (Микки, Микки), (Микки, Ицик), (Инна, Инна), (Мила, Мила), (Габи, Габи)}.

Приступим к написанию T-SQL запроса к таблицам V и R (представляющим множество и отношение на этом множестве), проверяющего, обладает ли R свойством рефлексивности:

SELECT
CASE
WHEN EXISTS
(SELECT v, v FROM dbo.V
EXCEPT
SELECT r1, r2 FROM dbo.R)
THEN "Нет"
ELSE "Да",
END AS reflexive

Первый подзапрос в операции EXCEPT возвращает набор всех упорядоченных пар (v, v) для всех строк таблицы V. Второй подзапрос возвращает набор упорядоченных пар (r1, r2) - всех строк таблицы R. Операция EXCEPT, таким образом, вернет все упорядоченные пары, встречающиеся в первом и отсутствующие во втором наборе. Предикат EXISTS нужен для проверки существования хотя бы одной записи в результирующем наборе. Если найдется хотя бы одна такая запись, то выражение CASE возвратит нам «Нет» (нет рефлексивности), но и «Да» - в противном случае (есть рефлексивность).

Взгляните на три примера наборов данных в листингах 3, 4 и 5 и попытайтесь определить без запуска запроса, в каких из них отношение будет рефлексивным. Ответы даются далее в тексте статьи.

Иррефлексивнось. Отношение R на множестве V называется иррефлексивным (не путать с нерефлексивностью), если для каждого элемента v ∈ V следует, что (v, v) ∉ R. Отношение не иррефлексивно, если найдется элемент v ∈ V, для которого (v, v) ∈ R. Примером иррефлексивного отношения на множестве F членов моей семьи служит отношение «быть родителем», так как никакой человек не может быть родителем самому себе. Членами этого отношения на F будут следующие пары: {(Мила, Ицик), (Мила, Микки), (Мила, Инна), (Габи, Ицик), (Габи, Микки), (Габи, Инна)}.

Следующий запрос является проверочным - будет ли отношение R на V иррефлексивным:

SELECT
CASE
WHEN EXISTS
(SELECT * FROM dbo.R
WHERE r1 = r2)
THEN "Нет"
ELSE "Да"
END AS irreflexive

Внешние ключи в определении таблицы R были введены для обеспечения того, что лишь элементы V смогут составить атрибуты r1 и r2 записи R. Таким образом, остается только проверить, нет ли в R записей с совпадающими атрибутами r1 и r2. Если такая запись найдется, отношение R не иррефлексивно, если записи нет, оно иррефлексивно.

Симметричность. Отношение R на множестве V называется симметричным, если вместе с (r1, r2) ∈ R всегда выполняется и (r2, r1) ∈ R. Отношение не симметрично, если найдется некоторая пара (r1, r2) ∈ R, для которой (r2, r1) ∉ R. На множестве F членов семьи Бен-Ган отношение «является братом или сестрой (is a sibling of)» будет примером симметричного отношения. Парами этого отношения будут следующие наборы: {(Ицик, Микки), (Ицик, Инна), (Микки, Ицик), (Микки, Инна), (Инна, Ицик), (Инна, Микки)}.

Следующий запрос является проверочным - будет ли отношение R на V симметричным:

SELECT
CASE
WHEN EXISTS
(SELECT r1, r2 FROM dbo.R
EXCEPT
SELECT r2, r1 FROM dbo.R)
THEN "Нет"
ELSE "Да"
END AS symmetric

Код запроса использует операцию EXCEPT. Первый подзапрос операции EXCEPT возвращает набор упорядоченных пар (r1, r2) - записей таблицы R, а второй - набор упорядоченных пар (r2, r1) по каждой записи R. Если отношение R на множестве V не симметрично, то операция EXCEPT вернет непустой результирующий набор, а предикат EXISTS, соответственно, значение TRUE и, наконец, выражение CASE вернет «Нет».

Если отношение симметрично, то выражение CASE даст «Да».

Асимметричность. Отношение R на множестве V асимметрично (не следует путать это свойство с несимметричностью), если для каждого набора (r1, r2) ∈ R, в котором r1 ≠ r2, справедливо, что (r2, r1) ∉ R. Примером асимметричного отношения на множестве F членов семьи автора будет отношение «являться родителем», которое было описано выше. В качестве упражнения постарайтесь придумать пример отношения на непустом множестве, которое одновременно является симметричным и асимметричным. Проверьте пример данных в этой статье в качестве решения.

SELECT
CASE
WHEN EXISTS
(SELECT r1, r2 FROM dbo.R WHERE r1 r2
INTERSECT
SELECT r2, r1 FROM dbo.R WHERE r1 r2)
THEN "Нет"
ELSE "Да"
END AS asymmetric

В коде используется операция INTERSECT. Первый подзапрос в этой операции возвращает упорядоченную пару (r1, r2) для каждой записи таблицы R, в которой r1 r2.

Второй подзапрос операции INTERSECT возвращает упорядоченную пару (r2, r1) для каждой записи таблицы R, в которой r1 r2. Если в результирующий набор (результат пересечения этих множеств) входит хотя бы одна запись, это будет означать, что R не асимметрично; в противном случае R асимметрично.

Транзитивность. Отношение R на множестве V является транзитивным, если из включений (a, b) ∈ R и (b, c) ∈ R, всегда вытекает, что и (a, c) ∈ R. Примером транзитивного отношения на множестве членов семьи F будет отношение «является братом или сестрой», которое было рассмотрено выше.

Приведенный ниже код проверяет транзитивность отношения R:

SELECT
CASE
WHEN EXISTS
(SELECT *
FROM dbo.R AS RA
INNER JOIN dbo.R AS RB
ON RA.r2 = RB.r1
LEFT OUTER JOIN dbo.R AS RC
ON RA.r1 = RC.r1 AND RB.r2 = RC.r2
WHERE RC.r1 IS NULL)
THEN "Нет"
ELSE "Да"
END AS transitive

В коде, во‑первых, используется внутренняя связь (inner join) между двумя экземплярами R, для того чтобы отбирать лишь те строки, в которых r2 в первом экземпляре совпадает с r1 на втором экземпляре. Во‑вторых, в коде применяется левая внешняя связь (left outer join) с третьим экземпляром таблицы R, в соответствии с которой r1 первого экземпляра R совпадает с r1 третьего экземпляра, а r2 второго экземпляра совпадает с r2 третьего. Если существует хотя бы одна результирующая строка во внутреннем подзапросе (условие отбора для третьего экземпляра: r1 есть Null), это означает, что отношение не транзитивно; в противном случае отношение R транзитивно.

Отношение эквивалентности. Отно­ше­нием эквивалентности является такое отношение, которое одновременно обладает свойствами рефлексивности, симметричности и транзитивности. Можно использовать запросы, предложенные выше для раздельной проверки наличия каждого свойства: если отношение обладает всеми тремя, то следует заключить, что имеет место отношение эквивалентности. Кроме того, вы можете использовать коды листинга 6 для проверки всех свойств отношения R на множестве V, которые ранее обсуждались в статье, в том числе проверку свойства быть отношением эквивалентности. Если провести прогонку листинга 6 для примеров данных 1, 2 и 3 (полученных на основе листингов 3, 4 и 5 соответственно), то получатся результаты, приведенные в таблицах 1, 2 и 3 соответственно.

Возвращаясь к основам T-SQL

Таким образом, мы рассмотрели фундаментальную тему из математической теории множеств: свойства отношений на множествах. Я предложил проверочные коды T-SQL для контроля свойств некоторого отношения, представленного таблицей R (упорядоченных пар элементов), на множестве элементов, представленных таблицей V.

Использование основных конструкций T-SQL помогло нам правильно настроить и применить средства этого языка для лучшего понимания свойств отношений на множествах.

Ицик Бен-Ган ([email protected]) - преподаватель и консультант, автор книг по T-SQL, имеет звание SQL Server MVP

Похожие статьи