Метод вариации произвольных постоянных. Примеры на метод вариации произвольной постоянной

18.10.2023

Метод вариации произвольных постоянных

Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = f (t )

состоит в замене произвольных постоянных c k в общем решении

z (t ) = c 1 z 1 (t ) + c 2 z 2 (t ) + ... + c n z n (t )

соответствующего однородного уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = 0

на вспомогательные функции c k (t ) , производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z 1 ,z 2 ,...,z n , что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам .

Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

состоит в построении частного решения (1) в виде

где Z (t ) - базис решений соответствующего однородного уравнения, записанный в виде матрицы, а векторная функция , заменившая вектор произвольных постоянных, определена соотношением . Искомое частное решение (с нулевыми начальными значениями при t = t 0 имеет вид

Для системы с постоянными коэффициентами последнее выражение упрощается:

Матрица Z (t )Z − 1 (τ) называется матрицей Коши оператора L = A (t ) .

Внешние ссылки

  • exponenta.ru - Теоретическая справка c примерами

Wikimedia Foundation . 2010 .

Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.

Линейные дифференциальные уравнения первого порядка - это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.

Метод вариации произвольной постоянной (метод Лагранжа) состоит в следующем:

1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.

2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).

3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).

Рассмотрим примеры на метод вариации произвольной постоянной. Возьмем те же задания, что и в , сравним ход решения и убедимся, что полученные ответы совпадают.

1) y’=3x-y/x

Перепишем уравнение в стандартном виде (в отличие от метода Бернулли, где форма записи нам нужна была только для того, чтобы увидеть, что уравнение — линейное).

y’+y/x=3x (I). Теперь действуем по плану.

1) Решаем однородное уравнение y’+y/x=0. Это уравнение с разделяющимися переменными. Представляем y’=dy/dx, подставляем: dy/dx+y/x=0, dy/dx=-y/x. Обе части уравнения умножаем на dx и делим на xy≠0: dy/y=-dx/x. Интегрируем:

2) В полученном общем решении однородного уравнения будем считать С не константой, а функцией от x: С=С(x). Отсюда

Полученные выражения подставляем в условие (I):

Интегрируем обе части уравнения:

здесь С — уже некоторая новая константа.

3) В общее решение однородного уравнения y=C/x, где мы считали С=С(x), то есть y=C(x)/x, вместо С(x) подставляем найденное выражение x³+C: y=(x³+C)/x или y=x²+C/x. Получили такой же ответ, как и при решении методом Бернулли.

Ответ: y=x²+C/x.

2) y’+y=cosx.

Здесь уравнение уже записано в стандартном виде, преобразовывать не надо.

1) Решаем однородное линейное уравнение y’+y=0: dy/dx=-y; dy/y=-dx. Интегрируем:

Чтобы получить более удобную форму записи, экспоненту в степени С примем за новую С:

Это преобразование выполнили, чтобы удобнее было находить производную.

2) В полученном общем решении линейного однородного уравнения считаем С не константой, а функцией от x: С=С(x). При этом условии

Полученные выражения y и y’ подставляем в условие:

Умножим обе части уравнения на

Интегрируем обе части уравнения по формуле интегрирования по частям, получаем:

Здесь С уже не функция, а обычная константа.

3) В общее решение однородного уравнения

подставляем найденную функцию С(x):

Получили такой же ответ, как и при решении методом Бернулли.

Метод вариации произвольной постоянной применим и для решения .

y’x+y=-xy².

Приводим уравнение к стандартному виду: y’+y/x=-y² (II).

1) Решаем однородное уравнение y’+y/x=0. dy/dx=-y/x. Умножаем обе части уравнения на dx и делим на y: dy/y=-dx/x. Теперь интегрируем:

Подставляем полученные выражения в условие (II):

Упрощаем:

Получили уравнение с разделяющимися переменными относительно С и x:

Здесь С — уже обычная константа. В процессе интегрирования писали вместо С(x) просто С, чтобы не перегружать запись. А в конце вернулись к С(x), чтобы не путать С(x) с новой С.

3) В общее решение однородного уравнения y=C(x)/x подставляем найденную функцию С(x):

Получили такой же ответ, что и при решении способом Бернулли.

Примеры для самопроверки:

1. Перепишем уравнение в стандартном виде:y’-2y=x.

1) Решаем однородное уравнение y’-2y=0. y’=dy/dx, отсюда dy/dx=2y, умножаем обе части уравнения на dx, делим на y и интегрируем:

Отсюда находим y:

Выражения для y и y’ подставляем в условие (для краткости будем питать С вместо С(x) и С’ вместо C"(x)):

Для нахождения интеграла в правой части применяем формулу интегрирования по частям:

Теперь подставляем u, du и v в формулу:

Здесь С =const.

3) Теперь подставляем в решение однородного

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

Похожие статьи